The role of chromosomal V(D)J recombination of lymphocytes in the formation of antitumor immunity and the effectiveness of immunotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The effectiveness of antitumor immunity is determined by various mechanisms of recognition of tumor antigens, while the diversity of the repertoire of antigenic receptors is determined by V(D)J recombinations in maturing T and B cells.

The aim of this work is to review scientific literature data on the role of chromosomal V(D)J recombinations of immune system cells in the mechanisms of antitumor immunity.

Material and methods. This review presents data on the main mechanisms of antitumor immunity and the role of T- and B-cell receptor gene rearrangement in its formation.

Results. From the presented analysis of literary sources, it follows that carcinogenesis is accompanied by suppression of the antitumor activity of the immune system. As a result, immunodeficiency states are observed in patients with malignant neoplasms.

By-products of chromosomal V(D)J recombinations are DNA excision circles TREC and KREC. Their quantitative analysis in cancer patients makes it possible to determine the presence of immunodeficiency, as well as to evaluate the effectiveness of the formation of antitumor immunity.

It is also noted that in immunocompromised cancer patients, the possibility of using personalized immunostimulation methods should be considered, which will improve control over the malignant process.

Conclusions. The review reflects the mechanisms of the immune system response to carcinogenesis. The main stages of the interaction of the tumor antigen with the patient’s immune system are considered. Methods for evaluating the viability of antitumor immunity are described.

Full Text

Restricted Access

About the authors

Alexander V. Sultanbaev

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Author for correspondence.
Email: rkodrb@yandex.ru
ORCID iD: 0000-0003-0996-5995

Candidate of Medical Sciences, Head of the Department of Antitumor Drug Therapy of the Republican Clinical Oncological Dispensary of the Ministry of Health of the Republic of Belarus

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Shamil I. Musin

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Email: musin_shamil@mail.ru
ORCID iD: 0000-0003-1185-977X

Candidate of Medical Sciences, Head of the Surgical Department No. 6 of the Republican Clinical Oncological Dispensary of the Ministry of Health of the Republic of Bashkortostan

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Konstantin V. Menshikov

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Email: kmenshikov80@bk.ru
ORCID iD: 0000-0003-3734-2779

Candidate of Medical Sciences, Associate Professor of the Department of Oncology with Courses of Oncology and Pathological Anatomy, IDPO Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Health of the Russian Federation, Oncologist of the Chemotherapy Department of the Republican Clinical Oncological Dispensary of the Ministry of Health of the Republic of Belarus

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Adel A. Izmailov

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Email: izmailov75@mail.ru
ORCID iD: 0000-0002-8461-9243

Doctor of Medical Sciences, Chief Physician of the Republican Clinical Oncological Dispensary of the Ministry of Health of the Republic of Belarus

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Ainur F. Nasretdinov

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Email: rkodrb@yandex.ru
ORCID iD: 0000-0001-8340-7962

oncologist, head of the department of antitumor drug therapy No. 2 of the Republican Clinical Oncological Dispensary of the Ministry of Health of the Republic of Bashkortostan

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Nadezhda I. Sultanbaevа

HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus

Email: nd.sultan@rambler.ru
ORCID iD: 0000-0001-5926-0446

Oncologist of the Department of Antitumor Drug Therapy No. 1 of the Republican Oncological Dispensary of the Ministry of Health of the Republic of Belarus

Russian Federation, prospekt Oktyabrya str., 73/1, Ufa, 450054

Irina A. Menshikova

GBOU «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Email: imenshikova@bk.ru
ORCID iD: 0000-0002-8665-8895

candidate of medical sciences, assistant professor, Associate Professor of the Department of Biological Chemistry, Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Russian Federation, Lenin str., 3, Ufa, 450008

Ilya V. Tsimafeyeu

Autonomous non-profit organization «Bureau of Cancer Research»

Email: tsimafeyeu@gmail.com
ORCID iD: 0000-0002-7357-0392

Director of the Bureau of Cancer Research, Member of the International Association of American Clinical Oncology (ASCO), Member of the Scientific Council of the College of the European Commission (ESO)

Russian Federation, 2 Mayakovsky Lane, Moscow, 109147

Danila O. Lipatov

GBOU «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Email: lipatov911@gmail.com
ORCID iD: 0000-0002-3193-9008

student of the Faculty of Medicine, Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Russian Federation, Lenin str., 3, Ufa, 450008

Mikhail V. Sultanbaev

GBOU «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Email: mihail@yandex.ru
ORCID iD: 0000-0002-2222-4940

candidate of chemical sciences, Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Russian Federation, Lenin str., 3, Ufa, 450008

Oleg N. Lipatov

GBOU «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Email: lipatovoleg@bk.ru

Doctor of Medical Sciences, professor, head of the course of oncology and pathological anatomy of the IPO Federal State Budgetary Educational Institution of Higher Education «Bashkir State Medical University» of the Ministry of Health of the Russian Federation

Russian Federation, Lenin str., 3, Ufa, 450008

Dmitry A. Kudlay

FGAOU HE «I. M. Sechenov First Moscow State Medical University» of the Ministry of Health f the Russian Federation (Sechenov University), FGBU «State Scientific Center «Institute of Immunology» of the Federal Medical and Biological Agency

Email: d624254@gmail.com
ORCID iD: 0000-0003-1878-4467

MD, сorr. member of the RAS, Prof. of the Dep. of Pharmacology, Institute of Pharmacy of I.M. Sechenov First Moscow State Medical University (Sechenov University)) of the MOH of Russia. Leading res. at the laboratory of personalized medicine and molecular immunology NRC Institute of Immunology FMBA of Russia

Russian Federation, Trubetskaya Street, 8, Moscow, 119435; Kashirskoe shosse, 24, Moscow, 115522

References

  1. Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В., Султанбаев А.В. Уровень опухоль-инфильтрирующих лимфоцитов и PD-статус как возможные прогностические маркеры выживаемости и эффективности терапии при трижды негативном раке молочной железы. Опухоли женской репродуктивной системы. 2020; 16 (1): 65–70. doi: 10.17650/1994-4098-2020-16-1-65-70 [Nasretdinov A.F., Sultanbaeva N.I., Musin S.I., Pushkarev A.V., Menshikov K.V., Pushkarev V.A., Sultanbaev A.V. Level of tumor-infiltrating lymphocytes and PD status as potential prognostic markers of survival and therapy effectiveness in triple-negative breast cancer. Tumors of female reproductive system. 2020; 16 (1): 65–70. doi: 10.17650/1994-4098-2020-16-1-65-70 (in Russian)].
  2. Шубина И.Ж., Сергеев А.В., Мамедова Л.Т., Соколов Н.Ю., Киселевский М.В. Современные представления о противоопухолевом иммунитете. Российский биотерапевтический журнал. 2015; 14 (3): 19–28. DOI: https: //doi.org/10.17650/1726-9784-2015-14-3-19-28 [Shubina I.Z., Sergeev A.V., Mamedova L.T., Sokolov N.Yu., Kiselevsky M.V. Сurrent understanding of antitumor immunity. Russian J. of Biotherapy. 2015; 14 (3): 19–28. DOI: https: //doi.org/10.17650/1726-9784-2015-14-3-19-28 (in Russian)].
  3. Wu Y., Biswas D., Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response. Semin. Cancer. Biol. 2022; 84: 89–102. doi: 10.1016/j.semcancer.2021.02.013
  4. Wolf Y., Samuels Y. Intratumor Heterogeneity and Antitumor Immunity Shape One Another Bidirectionally. Clin. Cancer Res. 2022; 28 (14): 2994–3001. doi: 10.1158/1078-0432.CCR-21-1355
  5. De Visser K.E., Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41 (3): 374–403. doi: 10.1016/j.ccell.2023.02.016
  6. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434 (7035): 917–21. doi: 10.1038/nature03445
  7. Tang Q., Chen Y., Li X., Long S., Shi Y., Yu Y., Wu W., Han L., Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022; 13: 964442. doi: 10.3389/fimmu.2022.964442
  8. Zhang H., Liu L., Liu J., Dang P., Hu S., Yuan W., Sun Z., Liu Y., Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol. Cancer. 2023; 22 (1): 58. doi: 10.1186/s12943-023-01725-x
  9. Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Nasretdinov A., Menshikova I., Sultanbaev M., Kudlay D., Prodeus A. 58P Quantitative indicators of TREC and KREC excision rings in breast cancer. ESMO Open. 2023; 8 (1). doi: 10.1016/j.esmoop.2023.101282
  10. Thommen D.S., Schumacher T.N. T Cell Dysfunction in Cancer. Cancer Cell. 2018; 33 (4): 547–62. doi: 10.1016/j.ccell.2018.03.012
  11. Bone G., Lauder I. Cellular immunity, peripheral blood lymphocyte count and pathological staging of tumours in the gastrointestinal tract. Br. J. Cancer. 1974; 30 (3): 215–21. doi: 10.1038/bjc.1974.184
  12. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012; 12 (4): 253–68. doi: 10.1038/nri3175
  13. Allen B.M., Hiam K.J., Burnett C.E., Venida A., DeBarge R., Tenvooren I., Marquez D.M., Cho N.W., Carmi Y., Spitzer M.H. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 2020; 26 (7): 1125–34. doi: 10.1038/s41591-020-0892-6
  14. Borg C., Ray-Coquard I., Philip I., Clapisson G., Bendriss-Vermare N., Menetrier-Caux C., Sebban C., Biron P., Blay J.Y. CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic chemotherapy in adult patients with cancer. Cancer. 2004; 101 (11): 2675–80. doi: 10.1002/cncr.20688
  15. Ray-Coquard I., Borg C., Bachelot T., Sebban C., Philip I., Clapisson G., Le Cesne A., Biron P., Chauvin F., Blay J.Y.; ELYPSE study group. Baseline and early lymphopenia predict for the risk of febrile neutropenia after chemotherapy. Br. J. Cancer. 2003; 88 (2): 181–6. doi: 10.1038/sj.bjc.6600724
  16. Péron J., Cropet C., Tredan O., Bachelot T., Ray-Coquard I., Clapisson G., Chabaud S., Philip I., Borg C., Cassier P., Labidi Galy I., Sebban C., Perol D., Biron P., Caux C., Menetrier-Caux C., Blay J.Y. CD4 lymphopenia to identify end-of-life metastatic cancer patients. Eur. J. Cancer. 2013; 49 (5): 1080–9. doi: 10.1016/j.ejca.2012.11.003
  17. Ray-Coquard I., Cropet C., Van Glabbeke M., Sebban C., Le Cesne A., Judson I., Tredan O., Verweij J., Biron P., Labidi I., Guastalla J.P., Bachelot T., Perol D., Chabaud S., Hogendoorn P.C., Cassier P., Dufresne A., Blay J.Y.; European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009; 69 (13): 5383–91. doi: 10.1158/0008-5472.CAN-08-3845
  18. Trédan O., Manuel M., Clapisson G., Bachelot T., Chabaud S., Bardin-dit-Courageot C., Rigal C., Biota C., Bajard A., Pasqual N., Blay J.Y., Caux C., Ménétrier-Caux C. Patients with metastatic breast cancer leading to CD4+ T cell lymphopaenia have poor outcome. Eur. J. Cancer. 2013; 49 (7): 1673–82. doi: 10.1016/j.ejca.2012.11.028
  19. Bagchi S., Yuan R., Engleman E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu. Rev. Pathol. 2021; 16: 223–49. doi: 10.1146/annurev-pathol-042020-042741
  20. Sakamuri D., Glitza I.C., Betancourt Cuellar S.L., Subbiah V., Fu S., Tsimberidou A.M., Wheler J.J., Hong D.S., Naing A., Falchook G.S., Fanale M.A., Cabanillas M.E., Janku F. Phase I Dose-Escalation Study of Anti-CTLA-4 Antibody Ipilimumab and Lenalidomide in Patients with Advanced Cancers. Mol. Cancer Ther. 2018; 17 (3): 671–6. doi: 10.1158/1535-7163.MCT-17-0673
  21. Simmons D., Lang E. The Most Recent Oncologic Emergency: What Emergency Physicians Need to Know About the Potential Complications of Immune Checkpoint Inhibitors. Cureus. 2017; 9 (10): 1774. doi: 10.7759/cureus.1774
  22. Дмитриевская М.И., Ибрагимова Д.Н., Усеинова А.Н., Ребик А.А. Роль ингибиторов иммунных контрольных точек в реализации противоракового иммунитета. Крымский журнал экспериментальной и клинической медицины. 2021; 11 (3): 93–9. doi: 10.37279/2224-6444-2021-11-3-93-99 [Dmitrievskaja M.I., Ibragimova D.N., Useinova A.N., Rebik A.A. The role of immune checkpoint inhibitors in antitumoral immunity. Crimea J. of Experimental and Clinical Medicine. 2021; 11 (3): 93–9. doi: 10.37279/2224-6444-2021-11-3-93-99 (in Russian)].
  23. Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018; 11 (4): 303–12. doi: 10.21320/2500-21392018-11-4-303-312 [Gribkova I.V. Immune checkpoint inhibitors in pediatric hematologic malignancies. Oncohematology. 2023; 18 (2): 25 34. doi: 10.21320/2500-21392018-11-4-303-312 (in Russian)].
  24. Qayoom H., Sofi S., Mir M.A. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol. Res. 2023. doi: 10.1007/s12026-023-09376-2
  25. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434 (7035): 917–21. doi: 10.1038/nature03445
  26. Саяпина М. С. Иммунорегуляторные функции ингибиторов PD-1/PD-L1 и развитие к ним резистентности. Злокачественные опухоли. 2017; 7 (2): 94–9. doi: 10.18027/2224-5057-2017-2-94-99 [Sayapina M.S. Immunoregulatory functions of PD-1/PD-L1 inhibitors and development of resistance to them. Malignant tumours. 2017; 7 (2): 94–9. doi: 10.18027/2224-5057-2017-2-94-99 (in Russian)].
  27. Boussiotis V.A. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N. Engl. J. Med. 2016; 375 (18): 1767–78. doi: 10.1056/NEJMra1514296
  28. Болотина Л.В., Каприн А.Д. Иммуноонкология: новые горизонты лекарственной терапии солидных опухолей. Онкология. Журнал им. П.А. Герцена. 2017; 6 (5): 74–80. doi: 10.17116/onkolog20176574-80 [Bolotina L.V., Kaprin A.D. Immuno-oncology: new possibilities of drug therapy for solid tumors. P.A. Herzen J. of Oncology. 2017; 6 (5): 74 80. doi: 10.17116/onkolog20176574-80 (in Russian)].
  29. Южакова Д.В., Ширманова М.В., Сергеева Т.Ф., Загайнова Е.В., Лукьянов К.А. Иммунотерапия злокачественных новообразований. Современные технологии в медицине. 2016; 8 (1): 173–82. doi: 10.17691/stm2016.8.1.23 [Yuzhakova D.V., Shirmanova M.V., Sergeeva T.F., Zagaynova E.V., Lukyanov К.А. Immunotherapy of Cancer (Review). Sovremennye tehnologii v medicine. 2016; 8 (1): 173. doi: 10.17691/stm2016.8.1.23 (in Russian)].
  30. Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020; 17 (8): 807–21. doi: 10.1038/s41423-020-0488-6
  31. Ott P.A., Bang Y.J., Piha-Paul S.A., Razak A.R.A., Bennouna J., Soria J.C., Rugo H.S., Cohen R.B., O’Neil B.H., Mehnert J.M., Lopez J., Doi T., van Brummelen E.M.J., Cristescu R., Yang P., Emancipator K., Stein K., Ayers M., Joe A.K., Lunceford J.K. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J. Clin. Oncol. 2019; 37 (4): 318–27. doi: 10.1200/JCO.2018.78.2276
  32. Qin T., Zeng Y.D., Qin G., Xu .F, Lu J.B., Fang W.F., Xue C., Zhan J.H., Zhang X.K., Zheng Q.F., Peng R.J., Yuan Z.Y., Zhang L., Wang S.S. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 2015; 6 (32): 33972–81. doi: 10.18632/oncotarget.5583
  33. Okiyama N., Tanaka R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergology international: official J. of the Japanese Society of Allergology. 2022; 71 (2): 169–78. doi: 10.1016/j.alit.2022.01.001
  34. Yao L., Jia G., Lu L., Bao Y., Ma W. Factors affecting tumor responders and predictive biomarkers of toxicities in cancer patients treated with immune checkpoint inhibitors. Int. Immunopharmacol. 2020; 85: 106628. doi: 10.1016/j.intimp.2020.106628
  35. Tsimafeyeu I., Imyanitov E., Zavalishina L., Raskin G., Povilaitite P., Savelov N., Kharitonova E., Rumyantsev A., Pugach I., Andreeva Y., Petrov A., Frank G., Tjulandin S. Agreement between PDL1 immunohistochemistry assays and polymerase chain reaction in non-small cell lung cancer: CLOVER comparison study. Sci. Rep. 2020; 10 (1): 3928. doi: 10.1038/s41598-020-60950-2
  36. van den Bulk J., Verdegaal E.M., de Miranda N.F.. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018; 8 (6): 180037. doi: 10.1098/rsob.180037
  37. Wang Y., Liu Z.G., Yuan H., Deng W., Li J., Huang Y., Kim B.Y.S., Story M.D., Jiang W. The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clin. Cancer Res. 2019; 25 (6): 1709–17. doi: 10.1158/1078-0432.CCR-18-2581
  38. Yu W.D., Sun G., Li J., Xu J., Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019; 452: 66–70. doi: 10.1016/j.canlet.2019.02.048
  39. Volkova M., Tsimafeyeu I., Olshanskaya A., Khochenkova Y., Solomko E., Ashuba S., Khochenkov D., Matveev V. Expression of growth factors and their receptors in the primary renal cell carcinoma: new data and review. Cent. European J. Urol. 2020; 73 (4): 466–75. doi: 10.5173/ceju.0189.R1
  40. Wolf M.M., Rathmell W.K., de Cubas A.A. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat. Rev. Nephrol. 2023. doi: 10.1038/s41581-023-00700-5.
  41. Tsimafeyeu I., Statsenko G., Vladimirova L., Besova N., Artamonova E., Raskin G., Rykov I., Mochalova A., Utyashev I., Gorbacheva S., Kazey V., Gavrilova E., Dragun N., Moiseyenko V., Tjulandin S. A phase 1b study of the allosteric extracellular FGFR2 inhibitor alofanib in patients with pretreated advanced gastric cancer. Invest. New Drugs. 2023; 41 (2): 324–32. doi: 10.1007/s10637-023-01340-z
  42. Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., Sultanbaev M., Askarov V., Kudlay D. 99P Quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023; 8 (1): 100957. DOI: https: //DOI.org/10.1016/j.esmoop.2023.100957
  43. Gellert M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 2002; 71: 101–32. doi: 10.1146/annurev.biochem.71.090501.150203
  44. Hiom K., Gellert M. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell. 1997; 88 (1): 65–72. doi: 10.1016/s0092-8674(00)81859-0
  45. Султанбаев А.В., Мусин Ш.И., Меньшиков К.В., Билалов Ф.С., Меньшикова И.А., Султанбаева Н.И., Липатов Д.О., Аскаров В.Е., Султанбаев М.В., Насретдинов А.Ф., Батырова Э.Р. Прогностическое значение эксцизионных колец KREC и TREC при злокачественных новообразованиях. Материалы V юбилейного Международного Форума онкологии и радиологии. М., 2022; 191. [Sultanbaev A.V., Musin Sh.I., Menshikov K.V., Bilalov F.S., Menshikova I.A., Sultanbaeva N.I., Lipatov D.O., Askarov V.E., Sultanbaev M. .V., Nasretdinov A.F., Batyrova E.R. Prognostic value of KREC and TREC excision rings in malignant neoplasms. Materials of the V Anniversary International Forum of Oncology and Radiology. Moscow, 2022; 191 (in Russian)].
  46. Gordukova M., Oskorbin I., Mishukova O., Zimin S., Zinovieva N., Davydova N., Smirnova A., Nikitina I., Korsunsky I., Filipenko M., Prodeus A. Development of real-time multiplex pcr for the quantitative determination of TREC’S AND KREC’S in whole blood and in dried blood spots. Medical Immunology (Russia). 2015; 17 (5): 467. doi: 10.15789/1563-0625-2015-5-467-478
  47. Schatz D.G., Swanson P.C. V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet. 2011; 45: 167–202. doi: 10.1146/annurev-genet-110410-132552
  48. Rodgers K.K. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem. Sci. 2017; 42 (1): 72–84. doi: 10.1016/j.tibs.2016.10.003
  49. Lu J., Van Laethem F., Bhattacharya A., Craveiro M., Saba I., Chu J., Love N.C., Tikhonova A., Radaev S., Sun X., Ko A., Arnon T., Shifrut E., Friedman N., Weng N.P., Singer A., Sun P.D. Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat. Commun. 2019; 10 (1): 1019. doi: 10.1038/s41467-019-08906-7
  50. Wu G.S., Culberson E.J., Allyn B.M., Bassing C.H. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. J. Immunol. 2022; 208 (11): 2583–92. doi: 10.4049/jimmunol.2100489
  51. Hiom K., Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell. 1998; 1 (7): 1011–9. doi: 10.1016/s1097-2765(00)80101-x
  52. Swanson P.C. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell. Biol. 2002; 22 (22): 7790–801. doi: 10.1128/MCB.22.22.7790-7801.2002
  53. Wu G.S., Bassing C.H. Inefficient V(D)J recombination underlies monogenic T cell receptor β expression. Proc. Natl. Acad. Sci. USA. 2020; 117 (31): 18172–4. doi: 10.1073/pnas.2010077117
  54. Давыдова Н.В., Продеус А.П., Образцов И.В., Кудлай Д.А., Корсунский И.А. Референсные значения концентрации TREC и KREC у взрослых. Врач. 2021; 32 (6): 21–8. DOI: https: //doi.org/10.29296/25877305-2021-06-05 [Davydova N.V., Prodeus A.P., Obraztsov I.V., Kudlai D.A., Korsunsky I.A. Reference values for TREC and KREC concentration in adults. Vrach (The Doctor). 2021; 32 (6): 21–8. DOI: https: //doi.org/10.29296/25877305-2021-06-05]
  55. Образцов И.В., Гордукова М.А., Цветкова Е.В., Кононова Е.В., Томилин И.Я., Кондратчик К.Л., Карелин А.Ф., Продеус А.П., Карачунский А.И., Румянцев А.Г. Эксцизионные кольца V(D)J рекомбинации B- и T-клеток как показатели иммунологической реконституции у детей с острым лимфобластным лейкозом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15 (4): 4250. DOI: https://doi.org/10.24287/1726-1708-2016-15-4-42-50 [Obraztsov I.V., Gordukova M.A., Tsvetkova E.V., Kononova E.V., Tomilin I.Y., Kondratchik K.L., Karelin A.F., Prodeus A.P., Karachunskiy A.I., Rumyantsev A.G. B- and T-cell V(D)J-recombination excision circles as indicators of immunological reconstitution in children with acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2016; 15 (4): 42–50. DOI: https://doi.org/10.24287/1726-1708-2016-15-4-42-50 (in Russian)].
  56. Kwok J.S.Y, Cheung S.K.F., Ho J.C.Y., Tang I.W.H., Chu P.W.K., Leung E.Y.S., Lee P.P.W., Cheuk D.K.L., Lee V., Ip P., Lau Y.L. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front. Immunol. 2020; 11: 1411. doi: 10.3389/fimmu.2020.01411
  57. Образцов И.В., Гордукова М.А., Северина Н.А., Бидерман Б.В., Смирнова С.Ю., Судариков А.Б., Никитин Е.А., Румянцев А.Г. Эксцизионные кольца V(D)J-рекомбинации B- и T-клеток как прогностический маркер при В-клеточном хроническом лимфолейкозе. Клиническая онкогематология. 2017; 10 (2): 131–40. doi: 10.21320/2500-2139-2017-10-2-131-140 [Obraztsov I.V., Gordukova M.A., Severina N.A., Biderman B.V., Smirnova S.Yu., Sudarikov A.B., Nikitin E.A., Rumyantsev A.G. V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017; 10 (2): 131–40. doi: 10.21320/2500-2139-2017-10-2-131-140 (in Russian)].
  58. Toubert A., Glauzy .S, Douay C., Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012; 79 (2): 83–9. doi: 10.1111/j.1399-0039.2011.01820.x
  59. Velardi E., Clave E., Arruda L.C.M., Benini F., Locatelli F., Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin. Immunopathol. 2021; 43 (1): 101–17. doi: 10.1007/s00281-020-00828-7
  60. Mensen A., Ochs C., Stroux A., Wittenbecher F., Szyska M., Imberti L., Fillatreau S., Uharek L., Arnold R., Dörken B., Thiel A., Scheibenbogen C., Na I.K. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J. Transl. Med. 2013; 11: 188. doi: 10.1186/1479-5876-11-188
  61. Корсунский И.А., Кудлай Д.А., Продеус А.П., Щербина А.Ю., Румянцев А.Г. Неонатальный скрининг на первичные иммунодефицитные состояния и Т-/В-клеточные лимфопении как основа формирования групп риска детей с врожденными патологиями. Педиатрия им. Г.Н. Сперанского. 2020; 99 (2): 8–15. doi: 10.24110/0031-403X-2020-99-2-8-15 [Korsunskiy I.A., Kudlay D.A., Prodeus A.P., Shсherbina A.Yu., Rumjancev A.G. Neonatal screening for primary immunodeficiency and Т-/B-cell lymphopenia as the basis for the formation of risk groups for children with congenital pathologies. Pediatria n.a. G.N. Speransky. 2020; 99 (2): 8–15. doi: 10.24110/0031-403X-2020-99-2-8-15 (in Russian)].
  62. Somech R., Lev A., Simon A.J., Korn D., Garty B.Z., Amariglio N., Rechavi G., Almashanu S., Zlotogora J., Etzioni A. Newborn screening for severe T and B cell immunodeficiency in Israel: a pilot study. Isr. Med. Assoc. J. 2013; 15 (8): 472–7.
  63. Drylewicz J., Vrisekoop N., Mugwagwa T., de Boer A.B., Otto S.A., Hazenberg M.D., Tesselaar K., de Boer R.J., Borghans J.A. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS One. 2016; 11 (3): e0152513. doi: 10.1371/journal.pone.0152513
  64. Mikhael N.L., Elsorady M. Clinical significance of T cell receptor excision circle (TREC) quantitation after allogenic HSCT. Blood Res. 2019; 54(4): 274-281. doi: 10.5045/br.2019.54.4.274
  65. Morgun A., Shulzhenko N., Socorro-Silva A., Diniz R.V., Almeida D.R., Gerbase-Delima M. T cell receptor excision circles (TRECs) in relation to acute cardiac allograft rejection. J. Clin. Immunol. 2004; 24 (6): 612–6. doi: 10.1007/s10875-004-6246-1
  66. Söderström A., Vonlanthen S., Jönsson-Videsäter K., Mielke S., Lindahl H., Törlén J., Uhlin M. T cell receptor excision circles are potential predictors of survival in adult allogeneic hematopoietic stem cell transplantation recipients with acute myeloid leukemia. Front. Immunol. 2022; 13: 954716. doi: 10.3389/fimmu.2022.954716
  67. Козлов В.А., Тихонова Е.П., Савченко А.А., Кудрявцев И.В., Андронова Н.В., Анисимова Е.Н., Головкин А.С., Демина Д.В., Здзитовецкий Д.Э., Калинина Ю.С., Каспаров Э.В., Козлов И.Г., Корсунский И.А., Кудлай Д.А., Кузьмина Т.Ю., Миноранская Н.С., Продеус А.П., Старикова Э.А., Черданцев Д.В., Чесноков А.Б., Шестерня П.А., Борисов А.Г. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021; 563. doi: 10.17513/np.518 [Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. .E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlai D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P. ., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Shesternya P.A., Borisov A.G. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor, 2021; 563. doi: 10.17513/np.518 (in Russian)].
  68. Motta M., Chiarini M., Ghidini C., Zanotti C., Lamorgese C., Caimi L., Rossi G., Imberti L. Quantification of newly produced B and T lymphocytes in untreated chronic lymphocytic leukemia patients. J. Transl. Med. 2010; 8: 111. doi: 10.1186/1479-5876-8-111
  69. Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., Crompton P., Baroudjian B., Routier E., Lejeune F.J. Phase I Study of Androgen Deprivation Therapy in Combination with Anti-PD-1 in Melanoma Patients Pretreated with Anti-PD-1. Clin. Cancer Res. 2023; 29 (5): 858–65. doi: 10.1158/1078-0432.CCR-22-2812
  70. Wu G.S., Yang-Iott K.S., Klink M.A., Hayer K.E., Lee K.D., Bassing C.H. Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion. J. Exp. Med. 2020; 217 (9): e20200412. doi: 10.1084/jem.20200412
  71. Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., West A.N., Carmona M., Kivork C., Seja E., Cherry G., Gutierrez A.J., Grogan T.R., Mateus C., Tomasic G., Glaspy J.A., Emerson R.O., Robins H., Pierce R.H., Elashoff D.A., Robert C., Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515 (7528): 568–71. doi: 10.1038/nature13954.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies