Mechanisms of cellular protection against nanomaterials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Entry of inorganic and organic nanomaterials through respiratory tract, skin and digestive system increases the risks of immunological disorders, hereditary and oncological diseases. Localization and stability of nanoparticles are determined by the mechanisms of inter- and intracellular vesicular transport.

The aim. Study of cellular uptake, targeted intracellular delivery, degradation and secretion of nanomaterials on the base of mechanisms of vesicular transport, unspecific innate resistance and adaptive immune response.

Results. Physical and chemical properties of nanomaterials determine their high reactivity and economy, penetration into organisms through all protective barriers and in any cells by means of endocytosis, macropinocytosis and phagocytosis. Concerns related to nanotechnology development include risks of: 1) cytotoxicity of nanomaterials, products of their cellular metabolism and delivered materials in nanocarriers; 2) immunological disorders resulted from immune status disbalance, chronic inflammation, allergic and autoimmune complications. Endocytosis and phagocytosis of nanomaterials cause destruction of foreign substances in lysosomes and secretion of free nanoparticles, extracellular vesicules and lysosomes containing nanoparticles. For intercellular exchange tunneling nanotubes are formed. Neutrophil extracellular traps provide barrier functions and deposition. Protection of organisms includes phagocytosis of nanomaterials, their detoxication in liver and spleen with subsequent excretion, and unspecific innate resistance with cytokine gene expression.

Conclusion. Natural mechanisms of cellular protection are based on nanoparticle degradation in lysosomes, secretion of foreign materials in free form, as part of extracellular vesicles or lysosomes, formation of tunneling nanotubes and neutrophil extracellular traps. Besides, antigen presentation causes cytokine gene expression resulting in protective reactions of organism.

Full Text

Restricted Access

About the authors

Olga V. Morozova

Federal Research Clinical Center of Physical-Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia; National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, Gamaleya Street 16, Moscow, 123098; Sirius University of Science and Technology

Author for correspondence.
Email: omorozova2010@gmail.com
ORCID iD: 0000-0001-9630-0777

leading researcer, doctor of Sciences

Russian Federation, Malaya Pirogovskaya Street 1а, Moscow, 119435; Gamaleya Street 16, Moscow, 123098; 1, Olympic Ave., Sochi, 354349

References

  1. Ottonelli I., Caraffi R., Tosi G., Vandelli M.A., Duskey J.T., Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int. J. Mol. Sci. 2022; 23: 2237. doi: 10.3390/ijms23042237.
  2. https://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf.
  3. Morozova O.V. Silver Nanostructures: Limited Sensitivity of Detection, Toxicity and Anti-Inflammation Effects. International Journal of Molecular Sciences. 2021; 22 (18): 9928. doi: 10.3390/ijms22189928.
  4. Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R., Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date, Pharm. Res. 2016; 33: 2373–87. doi: 10.1007/s11095-016-1958-5.
  5. Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: an update, Bioeng. Transl. Med. 2019; 4: 1–16. doi: 10.1002/btm2.10143.
  6. Qin N., Hemmes P., Mitchen K. Characterization of the Silver Nanoparticles in the Sovereign Silver® and Argentyn 23®, Bio-Active Silver Hydrosol™ Products. International J. of Nanomedicine. 2022; 17: 983–6. doi: 10.2147/IJN.S355084.
  7. Masyutin A.G., Bagrov D.V., Vlasova I.I., Nikishin I.I., Klinov D.V., Sychevskaya K.A., Onishchenko G.E., Erokhina M.V. Wall Thickness of Industrial Multi-Walled Carbon Nanotubes Is Not a Crucial Factor for Their Degradation by Sodium Hypochlorite. Nanomaterials (Basel). 2018; 8 (9): 715. doi: 10.3390/nano8090715.
  8. Liang X.W., Xu Z.P., Grice J., Zvyagin A.V., Roberts M.S., Liu X. Penetration of nanoparticles into human skin. Curr Pharm Des. 2013; 19 (35): 6353–66. doi: 10.2174/1381612811319350011.
  9. Parmar P.K., Wadhawan J., Bansal A.K. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov Today. 2021; 26 (10): 2329–49. doi: 10.1016/j.drudis.2021.07.010.
  10. Oh N., Park J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine. 2014; 9: 51–63. doi: 10.2147/IJN.S26592.
  11. Ge C., Du J., Zhao L., Wang L,, Liu Y., Li D., Yang Y., Zhou R., Zhao Y., Chai Z., Chen C. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA. 2011; 108 (41): 16968–73. doi: 10.1073/pnas.1105270108.
  12. Милякова М.Н., Пономарева Ю.В., Лайков А.В., Лимарева Л.В. Необратимая адсорбция белков на поверхности протезов для герниопластики – особенности и потенциальная роль в биосовместимости. Молекулярная медицина. 2018; 16 (3): 46–9. doi: 10.29296/24999490-2018-03-09. [Milyakova M.N., Ponomareva YU.V., Lajkov A.V., Limareva L.V. Irreversible adsorption of proteins on the surface of hernioplasty prostheses – features and potential role in biocompatibility. Molekulyarnaya medicina. 2018; 16 (3): 46–9. doi: 10.29296/24999490-2018-03-09 (in Russian)].
  13. Sebak A.A., Gomaa I.E.O., ElMeshad A.N., Farag M.H., Breitinger U., Breitinger H.-G., AbdelKader M.H. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting – Part II: In vitro and in vivo Kinetics Study. Int. J. Nanomed. 2020; 15: 9539–56. doi: 10.2147/ijn.s273721.
  14. Duan J., Liang S., Feng L., Yu Y., Sun Z. Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro, Int. J. Nanomedicine. 2018; 13: 7303–18. doi: 10.2147/IJN.S185348.
  15. Guo C., Wang J., Jing L., Ma R., Liu X., Gao L., Cao L., Duan J., Zhou X., Li Y., Sun Z. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles, Environ. Pollut. 2018; 236: 926–36. doi: 10.1016/j.envpol.2017.10.060.
  16. Camisasca A., Giordani S. Carbon nano-onions in biomedical applications: promising theranostic agents, Inorganica Chim. Acta. 2017; 468: 67–76. doi: 10.1016/j.ica.2017.06.009.
  17. Foroozandeh P., Aziz A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018; 13: 339. doi: 10.1186/s11671-018-2728-6.
  18. Wu Y., Xu M., Wang P., Syeda A.K. R., Huang P. , Dong X.-P. Lysosomal potassium channels. Cell Calcium. 2022; 102: 102536. doi: 10.1016/j.ceca.2022.102536.
  19. Rickman A.D., Hilyard A., Heckmann B.L. Dying by fire: noncanonical functions of autophagy proteins in neuroinflammation and neurodegeneration. Neural. Regen. Res. 2022; 17 (2): 246–50. doi: 10.4103/1673-5374.317958.
  20. Zhang X., Soldati T. Detecting, Visualizing and Quantitating the Generation of Reactive Oxygen Species in an Amoeba Model System. J. Vis. Exp. 2013; 81: e50717. doi: 10.3791/50717.
  21. Morozova O.V., Sokolova A.I., Pavlova E.R., Isaeva E.I, Obraztsova E.A., Ivleva E.A., Klinov D.V. Protein nanoparticles: cellular uptake, intracellular distribution, biodegradation and induction of cytokine gene expression Nanomedicine. 2020. doi: 10.1016/j.nano.2020.102293.
  22. Morozova O.V., Volosneva O.N. , Levchenko O.A., Barinov N.A. and Klinov D.V. Protein corona on gold and silver nanoparticles. Materials Science Forum. 2018; 936: 42–6. doi: 10.4028/ href='www.scientific.net/MSF.936.42' target='_blank'>www.scientific.net/MSF.936.42.
  23. Chen K., Liang J., Qin T., Zhang Y., Chen X. and Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front. Endocrinol. 2022; 13: 809596. doi: 10.3389/fendo.2022.809596.
  24. Rudraprasad D., Rawat A., Joseph J. Exosomes, extracellular vesicles and the eye. Exp. Eye Res. 2022; 214: 108892. doi: 10.1016/j.exer.2021.108892.
  25. Zhang Y., Bi J., Huang J., Tang Y., Du S., Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomedicine. 2020; 15: 6917–34. doi: 10.2147/IJN.S264498.
  26. Rustom A., Saffrich R., Markovic I. , Walther P., Gerdes H.-H. Nanotubular Highways for Intercellular Organelle Transport. Science. 2004; 303 (5660): 1007–10. doi: 10.1126/science.1093133.
  27. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004; 303: 1532–5. doi: 10.1126/science.1092385.
  28. Wang C. , Liu X. , Han Z., Zhang X. , Wang J. ,Wang K. , Yang Z. , Wei Z. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. Ecotoxicol. Environ. Saf. 2019; 183: 109508. doi: 10.1016/j.ecoenv.2019.109508.
  29. Zeng Q., Ma X., Song Y., Chen Q., Jiao Q. and Zhou L. Targeting regulated cell death in tumor nanomedicines Theranostics. 2022; 12 (2): 817–41. doi: 10.7150/thno.67932.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of 4 types of endocytosis, including clathrin- and caveolin-mediated endocytosis, phagocytosis, macropinocytosis and pinocytosis, and nanoparticle exocytosis [10]

Download (89KB)
3. Fig. 2. Accumulation dynamics of fluorescent protein nanoparticles after oral administration in different parts of rabbit brain

Download (184KB)
4. Fig. 3. Scheme of intercellular transfer of mitochondria from a mesenchymal stromal cell to a damaged cell and a transmission electron microscopy (TEM) image of a tunneling nanotube [1]

Download (114KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies