Clinical and microscopic analysis of cellular-molecular communications in focal cortical dysplasia IIIс

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cortical dyslamination with neuronal dysmorphism that occurs adjacent to an arteriovenous malformation (AVM) and is accompanied by epilepsy (E) is classified as FCD IIIc. Its etiology and pathogenesis have yet to be determined.

Objective: to clarify the cellular composition and expression of various receptors in the AVM and its perifocal zone with and without FCD IIIc

Material and methods. A morphological study of the surgical material of the brain of 14 patients with FCD IIIc and 13 patients with AVM without E was carried out using antibodies to: Ang1, Ang2, Ki-67, MHC1, CD34, NeuroD1, NG2, CD117, PrgRc, ErgRc, SSTR2, GH, SMA, GFAP and electron microscopy of the AVM of 1 patient with FCD IIIc.

Results. There were CD34+ endotheliocytes, CD34+/CD117+/NeuroD1+ telocytes, SMA+ smooth muscle cells, NG2+ pericytes in the walls of AVM vessels with E and without it. A scar zone of CD117+-telocytes forming a 3D structure was determined in 50% of patients with FCD IIIc and in 46% with AVMs. Electron microscopy confirmed the presence of pericytes and telocytes in the small AVM vessels. In no case was the expression of PrgRc, ErgRc, and GH, while SSTR2 was detected in vascular cells of all AVMs and the perifocal zone. The expression level of MHC1 was statistically significantly higher in the AVM vessels than around the vessels (p<0.001), and NeuroD1 was higher in the AVM vessels than in the vascular kidneys (p<0.001), while there were significantly more NG2+-pericytes in the perifocal zone than in AVM (p=0.02), and CD117+-telocytes – in AVM and perifocal zone than in vascular kidneys (p<0.001).

Conclusion. Our study made it possible to clarify the cellular composition of the AVM and its perifocal zone, revealing pericytes and telocytes; did not reveal differences in malformation with and without E. The pronounced expression of SSTR2 in AVM opens up new possibilities for therapy with somatostatin analogs.

Full Text

Restricted Access

About the authors

Lyubov B. Mitrofanova

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Email: lubamitr@yandex.ru

associate professor Research Laboratory of Pathomorphology, head department of Pathological Anatomy, pathologist of the pathoanatomical department, Almazov National Medical Research Centre, doctor of Medical Sciences, professor

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

Zaur M. Rasulov

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Email: zaurneuro@yandex.ru

postgraduate student Department of Neurosurgery Almazov National Medical Research Centre

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

Olga M. Vorobeva

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Email: olgarasp@yandex.ru

pathologist of the pathoanatomical Department of the Clinic, associate professor of the Department of Pathological Anatomy, Almazov National Medical Research Centre, candidate of medical sciences

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

Andrey N. Gorshkov

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Email: angorsh@yahoo.com

head of the Laboratory of Intracellular Transport and Signaling Smorodintsev Research Institute of Influenza, senior researcher, Research Laboratory of Pathomorphology, Almazov National Medical Research Centre, candidate of biological sciences

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

Ksenia A. Sterkhova

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Email: ks.sterhova@gmail.com
ORCID iD: 0009-0000-0623-0040

resident, Almazov National Medical Research Centre

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

Alexey Yu. Ulitin

FSBI «NMIC named after V.A. Almazov»; FGBU «A.A. Smorodintsev Influenza Research Institute»

Author for correspondence.
Email: ulitinaleks@mail.ru
ORCID iD: 0000-0002-8343-4917

head of the Department of Neurosurgery, Almazov National Medical Research Centre, doctor of Medical Sciences, professor

Russian Federation, Akkuratova str., 2, St. Petersburg, 197341; Prof. Popov str., 15/17, St. Petersburg, 197022

References

  1. Schimmel K., Ali M.K., Tan S.Y., Teng J., Do H.M., Steinberg G.K., Stevenson D.A., Spiekerkoetter E. Arteriovenous Malformations–Current Understanding of the Pathogenesis with Implications for Treatment. International J. of Molecular Sciences. 2021; 22 (16): 9037. doi: 10.3390/ijms22169037
  2. Fleetwood I.G., Steinberg G.K.. Arteriovenous malformations. Lancet. 2002; 359 (9309): 863–73. doi: 10.1016/S0140-6736(02)07946-1
  3. Aboukaïs R., Vinchon M., Quidet M., Bourgeois P., Leclerc X., Lejeune J.P. Reappearance of arteriovenous malformations after complete resection of ruptured arteriovenous malformations: true recurrence or false-negative early postoperative imaging result? J. Neurosurg. 2017; 126 (4): 1088–93. doi: 10.3171/2016.3.JNS152846
  4. Blümcke I., Thom M., Aronica E., Armstrong D.D., Vinters H.V., Palmini A., Jacques T.S., Avanzini G., Barkovich A.J., Battaglia G., Becker A., Cepeda C., Cendes F., Colombo N., Crino P., Cross J.H., Delalande O., Dubeau F., Duncan J., Guerrini R., Kahane P., Mathern G., Najm I., Ozkara C., Raybaud C., Represa A., Roper S.N., Salamon N., Schulze-Bonhage A., Tassi L., Vezzani A., Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011; 52 (1): 158–74. doi: 10.1111/j.1528-1167.2010.02777.x
  5. Popescu B.O., Gherghiceanu M., Kostin S., Ceafalan L., Popescu L.M. Telocytes in meninges and choroid plexus. Neuroscience letters. 2012; 516 (2): 265–9. doi: 10.1016/j.neulet.2012.04.006
  6. Митрофанова Л.Б., Хазратов А.О., Красношлык П.В., Воробьева О.М., Горшков А.Н., Гуляев Д.А. Морфологическое исследование телоцитов в различных отделах нормального головного мозга взрослого человека. Medline. Российский биомедицинский журнал. 2018; 19 (1): 281–306. [Mitrofanova L.B., Khazratov A.O., Krasnoshlyk P.V., Vorobieva O.M., Gorshkov A.N., Gulyaev D.A. Morphological study of telocytes in various parts of the normal adult brain. Medline. Russian biomedical J. 2018; 19 (1): 281–306 (in Russian)]
  7. Pataskar A., Jung J., Smialowski P., Noack F., Calegari F., Straub T., Tiwari V.K. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. The EMBO J. 2016; 35 (1): 24–45. doi: 10.15252/embj.201591206
  8. Митрофанова Л.Б., Хазратов А.О., Гальковский Б.Э., Горшков А.Н., Гуляев Д.А. Телоциты в сердце и головном мозге человека в норме и при патологии Medline. Российский биомедицинский журнал. 2020; 21 (84): 1074–88. [Mitrofanova L.B., Khazratov A.O., Galkovskii B.E., Gorshkov A.N., Gulyaev D.A. Telocytes in the human heart and brain in normal and pathological conditions Medline. Russian biomedical J. 2020; 21 (84): 1074–88 (in Russian)]
  9. Mitrofanova L., Hazratov A., Galkovsky B., Gorshkov A., Bobkov D., Gulyaev D., Shlyakhto E. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget. 2020; 11 (4): 322–46. doi: 10.18632/oncotarget.27340
  10. Bei Y., Wang F., Yang C., Xiao J. Telocytes in regenerative medicine. J. Cell. Mol. Med. 2015; 19 (7): 1441–54. doi: 10.1111/jcmm.12594.
  11. Митрофанова Л.Б., Бобков Д.Е., Оганесян М.Г., Карпушев А.В., Кошевая Е.Г. Исследование электрофизиологических свойств телоцитов атриовентрикулярного узла и перифокальной зоны синусного узла у человека и свиньи. Российский кардиологический журнал. 2020; 25 (12): 3927. [Mitrofanova L.B., Bobkov D.E., Oganesyan M.G., Karpushev A.V., Koshevaya E.G. Study of the electrophysiological properties of telocytes of the atrioventricular node and the perifocal zone of the sinus node in humans and pigs. Russian J. of cardiology. 2020; 25 (12): 3927 (in Russian)]
  12. Winkler E.A., Birk H., Burkhardt J.K., Chen X., Yue J.K., Guo D., Rutledge W.C., Lasker G.F., Partow C., Tihan T., Chang E.F., Su H., Kim H., Walcott B.P., Lawton M.T. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J. Neurosurg. 2018; 129 (6): 1464–74. doi: 10.3171/2017.6.JNS17860
  13. Nadeem T., Bogue W., Bigit B., Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight. 2020; 5 (21): e125940. doi: 10.1172/jci.insight.125940
  14. Murphy P.A., Kim T.N., Huang L., Nielsen C.M., Lawton M.T., Adams R.H., Schaffer C.B., Wang R.A. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci USA. 2014; 111 (50): 18007–12. doi: 10.1073/pnas.141531611110.1172/jci.insight.125940
  15. Nielsen C.M., Cuervo H., Ding V.W., Kong Y., Huang E.J., Wang R.A. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development 2014; 141 (19): 3782–92. doi: 10.1242/dev.108951
  16. Nadeem T., Bommareddy A., Bolarinwa L., Cuervo H. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J. 2022; 36 (6): e22339. doi: 10.1096/fj.202200120R
  17. Selhorst S., Nakisli S., Kandalai S., Adhicary S., Nielsen C.M. Pathological pericyte expansion and impaired endothelial cell-pericyte communication in endothelial Rbpj deficient brain arteriovenous malformation. Front Hum Neurosci. 2022; 16: 974033. doi: 10.3389/fnhum.2022.974033
  18. Chapman A.D., Selhorst S., LaComb J., LeDantec-Boswell A., Wohl T.R., Adhicary S., Nielsen C.M. Endothelial Rbpj Is Required for Cerebellar Morphogenesis and Motor Control in the Early Postnatal Mouse Brain. Cerebellum. 2022. doi: 10.1007/s12311-022-01429-w
  19. Clatterbuck R.E., Eberhart C.G., Crain B.J., Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations J Neurol Neurosurg Psychiatry. 2001; 71: 188–92. doi: 10.1136/jnnp.71.2.188
  20. Jia Y.C., Fu J.Y., Huang P., Zhang Z.P., Chao B., Bai J. Characterization of Endothelial Cells Associated with Cerebral Arteriovenous Malformation. Neuropsychiatr Dis Treat. 2020; 16: 1015–22. doi: 10.2147/NDT.S248356
  21. Kulungowski A.M., Hassanein A.H., Nosé V., Fishman S.J., Mulliken J.B., Upton J., Zurakowski D., DiVasta A.D., Greene A.K. Expression of androgen, estrogen, progesterone, and growth hormone receptors in vascular malformations. Plast Reconstr Surg. 2012; 129 (6): 919–24. doi: 10.1097/PRS.0b013e31824ec3fb
  22. Duyka L.J., Fan C.Y., Coviello-Malle J.M., Buckmiller L., Suen J.Y. Progesterone Receptors Identified in Vascular Malformations of the Head and Neck. Otolaryngology–Head and Neck Surgery. 2009; 141 (4): 491–5. doi: 10.1016/j.otohns.2009.06.012
  23. Zhang J., Abou-Fadel J.S. Calm the raging hormone – a new therapeutic strategy involving progesterone-signaling for hemorrhagic CCMs. Vessel Plus. 2021; 5: 48. doi: 10.20517/2574-1209.2021.64
  24. Katz S.E., Klisovic D.D., O’Dorisio M.S., Lynch R., Lubow M. Expression of Somatostatin Receptors 1 and 2 in Human Choroid Plexus and Arachnoid Granulations: Implications for Idiopathic Intracranial Hypertension. Arch Ophthalmol. 2002; 120 (11): 1540–3. doi: 10.1001/archopht.120.11.1540
  25. Stumm R.K., Zhou C., Schulz S., Endres M., Kronenberg G., Allen J.P., Tulipano G., Höllt V. Somatostatin receptor 2 is activated in cortical neurons and contributes to neurodegeneration after focal ischemia. J. Neurosci. 2004; 24 (50): 11404–15. doi: 10.1523/JNEUROSCI.3834-04.2004
  26. Martel G., Dutar P., Epelbaum J., Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne). 2012; 3: 154. doi: 10.3389/fendo.2012.00154
  27. Aourz N., De Bundel D., Stragier B., Clinckers R., Portelli J., Michotte Y., Smolders I. Rat hippocampal somatostatin sst3 and sst4 receptors mediate anticonvulsive effects in vivo: indications of functional interactions with sst2 receptors. Neuropharmacology. 2011; 61 (8): 1327–33. doi: 10.1016/j.neuropharm.2011.08.003
  28. Gomes-Porras M., Cárdenas-Salas J., Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: a Review. Int J. Mol. Sci. 2020; 21 (5): 1682. doi: 10.3390/ijms21051682
  29. Ćorović A., Wall C., Nus M., Gopalan D., Huang Y., Imaz M., Zulcinski M., Peverelli M., Uryga A., Lambert J., Bressan D., Maughan R.T., Pericleous C., Dubash S., Jordan N., Jayne D.R., Hoole S.P., Calvert P.A., Dean A.F., Rassl D., Barwick T., Iles M., Frontini M., Hannon G., Manavaki R., Fryer T.D., Aloj L., Graves M.J., Gilbert F.J., Dweck M.R., Newby D.E., Fayad Z.A., Reynolds G., Morgan A.W., Aboagye E.O., Davenport A.P., Jørgensen H.F., Mallat Z., Bennett M.R., Peters J.E., Rudd J.H.F., Mason J.C., Tarkin J.M. Somatostatin Receptor PET/MR Imaging of Inflammation in Patients With Large Vessel Vasculitis and Atherosclerosis. J. Am. Call. Cardiol. 2023; 81 (4): 336–54. doi: 10.1016/j.jacc.2022.10.034

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. AVM without association with epilepsy: a – brain tissue between dilated vessels. b – Vessels of the perifocal zone with embolizate in the walls (black); stained with hematoxylin and eosin. c, d – Tears (indicated by arrows) and lysis of elastic fibers with their absence over a large extent of the wall and hemorrhage (highlighted by an oval); coloring according to Weigert – van Gieson. e, f – Discomplexation and uneven distribution of smooth muscle cells (expression of SMA) with their complete absence in some areas (circled); ×100

Download (365KB)
3. Fig. 2. Patient K., 32 years old with FCD IIIc. a – Ang1; b – Ang 2 on AVM vessel wall cells. c – MHC1; d – CD34; e – NG2; f – NeuroD1 (vascular kidneys are circled), g – CD117, h – Ki-67 in vascular kidney cells; ×200

Download (436KB)
4. Fig. 3. AVM without epilepsy. a – AVM with embolization (black embolizate in the lumen of vessels) with CD34 expression on telocytes along the outer edge of the vessel (arrowed); ×100. b – Expression of NG2 on pericytes of the wall of a large vessel; ×200

Download (108KB)
5. Fig. 4. AVM without epilepsy. a – Expression of CD117 on scar telocytes forming a 3D structure in the perifocal zone; b – Expression of CD117 on telocytes located along the outer edge of the vessel walls; ×400; c, d – Expression of GFAP on glia surrounding AVM; ×100; e – Expression of NeuroD1 on telocytes in the scar zone; ×200; f – Expression of CD34 on scar telocytes; ×100

Download (392KB)
6. Fig. 5. Electron microscopy of the AVM of the patient with FCD IIIc. a–c – vessels with perivascular cells (pericytes and telocytes). Micrographs show edematous extracellular matrix without organized collagen structures. d – area of cell necrosis. Symbols: E – endothelium, EC – erythrocytes, EM – extracellular matrix.

Download (218KB)
7. Fig. 6. Patient S. 43 years old with FCD IIIc. Expression of somatostatin receptors SSTR2: a – in the cells of the walls of blood vessels (indicated by arrows) and b – in vascular kidneys (circled); ×200

Download (146KB)
8. Fig. 7. Distribution diagrams: a – MHC1 in AVM (1) and perifocal zone (2); b – NG2+-pericytes in AVM (1) and perifocal zone (2)

Download (27KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies