Imbalance of immunoregulatory molecular cellular mechanisms as a cause of recurrent miscarriage

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Recurrent pregnancy loss (RPL) is an early spontaneous termination of pregnancy before 20 weeks, which is defined as two or more miscarriages. Most of the known causes associated with the pathophysiology of RPL include endocrine disorders, antiphospholipid syndrome, intrauterine infection, anatomical defects of the uterus, etc. However, in approximately 50% of cases, the cause of the pathogenesis of RPL remains unclear and may be associated with a violation of immune mechanisms, such as maternal tolerance to fetal alloantigens and controlled inflammation, which play a decisive role in successful pregnancy.

Purpose of the review. To summarize current knowledge about the molecular cellular immune mechanisms that ensure the induction and maintenance of maternal-fetal tolerance and highlight the association between impaired immunoregulation and the development of RPL.

Methods. The materials were the results of research on the topic over the past 23 years. Publications included in the Pubmed and eLibrary.ru databases were analyzed.

Results. This review provides information about the immune regulation of pregnancy, which is carried out through the interaction of molecular mediators and effector cells of the innate and adaptive immunity. Current evidence points to a key role of the immune system in the pathophysiology of RPL. Successful pregnancy requires a finely regulated and tightly controlled balance between immune activation and tolerance to fetal antigens.

Conclusion. The main events occur in the uteroplacental zone, where trophoblast cells and maternal lymphocytes come into close contact. The search for biomarkers for pregnancy complications is the focus of scientists.

Full Text

Restricted Access

About the authors

Ksenia A. Artemyeva

Research Institute of Human Morphology named after. Academician A.P. Avtsyn Federal State Budgetary Institution «Russian Scientific Center for Surgery named after Academician B.V. Petrovsky»

Author for correspondence.
Email: artemjeva_ksenia@mail.ru
ORCID iD: 0000-0002-1014-752X

Candidate of Medical Sciences, Senior Researcher at the Laboratory of Reproduction Pathology

Russian Federation, per. Abrikosovsky, 2, Moscow, 119991

Tatiana A. Gusarova

GBUZ «City Clinical Hospital named after. V.V. Vinogradov Department of Health of the City of Moscow»

Email: tatianagusarova73@mail.ru
ORCID iD: 0000-0003-1827-2197

Head of the Pathology Department

Russian Federation, st. Vavilova, 61, Moscow, 117292

Irina M. Bogdanova

Research Institute of Human Morphology named after. Academician A.P. Avtsyn Federal State Budgetary Institution «Russian Scientific Center for Surgery named after Academician B.V. Petrovsky»

Email: malaj43@mail.ru
ORCID iD: 0000-0002-6529-8149

Candidate of Biological Sciences, Senior Researcher at the Laboratory of Reproduction Pathology

Russian Federation, per. Abrikosovsky, 2, Moscow, 119991

Marina N. Boltovskaya

Research Institute of Human Morphology named after. Academician A.P. Avtsyn Federal State Budgetary Institution «Russian Scientific Center for Surgery named after Academician B.V. Petrovsky»

Email: maribolt@mail.ru
ORCID iD: 0000-0002-9751-2066

Doctor of Biological Sciences, Professor, Senior Researcher of the Laboratory of Reproduction Pathology

Russian Federation, per. Abrikosovsky, 2, Moscow, 119991

Natalya V. Nizyaeva

Research Institute of Human Morphology named after. Academician A.P. Avtsyn Federal State Budgetary Institution «Russian Scientific Center for Surgery named after Academician B.V. Petrovsky»

Email: niziaeva@gmail.com
ORCID iD: 0000-0001-5592-5690

Doctor of Medical Sciences, Head of the Laboratory of Reproduction Pathology

Russian Federation, per. Abrikosovsky, 2, Moscow, 119991

References

  1. Devall A.J., Coomarasamy A. Sporadic pregnancy loss and recurrent miscarriage. Best Pract Res Clin Obstet Gynaecol. 2020; 69: 30–9. doi: 10.1016/j.bpobgyn.2020.09.002.
  2. Salker M., Teklenburg G., Molokhia M., Lavery S., Trew G., Aojanepong T., Mardon H.J., Lokugamage A.U., Rai R., Landles C., Roelen B.A., Quenby S., Kuijk E.W., Kavelaars A., Heijnen C.J., Regan L., Macklon N.S., Brosens J.J. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010; 5 (4): e10287. doi: 10.1371/journal.pone.0010287.
  3. Ander S.E., Diamond M.S., Coyne C.B. Immune responses at the maternal-fetal interface. Sci Immunol. 2019; 4 (31): eaat6114. doi: 10.1126/sciimmunol.aat6114
  4. Bagkou Dimakou D., Lissauer D., Tamblyn J., Coomarasamy A., Richter A. Understanding human immunity in idiopathic recurrent pregnancy loss. Eur. J. Obstet Gynecol Reprod Biol. 2022; 270: 17–29. doi: 10.1016/j.ejogrb.2021.12.024
  5. Zhang Y.H., Tian M., Tang M.X., Liu Z.Z., Liao A.H. Recent Insight into the Role of the PD-1/PD-L1 Pathway in Feto-Maternal Tolerance and Pregnancy. Am. J. Reprod Immunol. 2015; 74 (3): 201–8. doi: 10.1111/aji.12365.
  6. Peng B., Zhang L., Xing A.Y., Hu M., Liu S.Y. The expression of human leukocyte antigen G and E on human first trimester placenta and its relationship with recurrent spontaneous abortion. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008; 39 (6): 976–9. Chinese.
  7. LeMaoult J., Zafaranloo K., Le Danff C., Carosella E.D. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005; 19 (6): 662–4. doi: 10.1096/fj.04-1617fje.
  8. Fuzzi B., Rizzo R., Criscuoli L., Noci I., Melchiorri L., Scarselli B., Bencini E., Menicucci A., Baricordi O.R. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur. J. Immunol. 2002; 32 (2): 311–5. doi: 10.1002/1521-4141(200202)32:2<311::AID-IMMU311>3.0.CO;2-8.
  9. Agrawal S., Pandey M.K., Mandal S., Mishra L., Agarwal S. Humoral immune response to an allogenic foetus in normal fertile women and recurrent aborters. BMC Pregnancy Childbirth. 2002; 2 (1): 6. doi: 10.1186/1471-2393-2-6
  10. Ramhorst R., Agriello E., Zittermann S., Pando M., Larriba J., Irigoyen M., Cortelezzi M., Auge L., Lombardi E., Etchepareborda J.J., Contreras Ortiz C., Fainboim L. Is the paternal mononuclear cells’ immunization a successful treatment for recurrent spontaneous abortion? Am. J. Reprod Immunol. 2000; 44 (3): 129–35. doi: 10.1111/j.8755-8920.2000.440301.x.
  11. Sammaritano L.R. Antiphospholipid syndrome. Best Pract Res Clin Rheumatol. 2020; 34 (1): 101463. doi: 10.1016/j.berh.2019.101463.
  12. Misasi R., Longo A., Recalchi S., Caissutti D., Riitano G., Manganelli V., Garofalo T., Sorice M., Capozzi A. Molecular Mechanisms of «Antiphospholipid Antibodies» and Their Paradoxical Role in the Pathogenesis of «Seronegative APS». Int. J. Mol. Sci. 2020; 21 (21): 8411. doi: 10.3390/ijms21218411.
  13. Mulla M.J., Brosens J.J., Chamley L.W., Giles I., Pericleous C., Rahman A., Joyce S.K., Panda B., Paidas M.J., Abrahams V.M. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am. J. Reprod Immunol. 2009; 62 (2): 96–111. doi: 10.1111/j.1600-0897.2009.00717.x.
  14. do Prado A.D., Piovesan D.M., Staub H.L., Horta B.L. Association of anticardiolipin antibodies with preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2010; 116 (6): 1433–43. doi: 10.1097/AOG.0b013e3181fe02ec.
  15. Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Núñez-Álvarez C., Hernández-Ramirez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., Knight J.S. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67 (11): 2990–3003. doi: 10.1002/art.39247.
  16. Erkan D., Salmon J.E. The Role of Complement Inhibition in Thrombotic Angiopathies and Antiphospholipid Syndrome. Turk J. Haematol. 2016; 33 (1): 1–7. doi: 10.4274/tjh.2015.0197.
  17. Liu T., Guo X., Liao Y., Liu Y., Zhu Y., Chen X. Correlation Between the Presence of Antinuclear Antibodies and Recurrent Pregnancy Loss: A Mini Review. Front Endocrinol (Lausanne). 2022; 13: 873286. doi: 10.3389/fendo.2022.873286.
  18. D’Ippolito S., Ticconi C., Tersigni C., Garofalo S., Martino C., Lanzone A., Scambia G., Di Simone N. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod Immunol. 2020; 83 (1): e13200. doi: 10.1111/aji.13200.
  19. van den Boogaard E., Vissenberg R., Land J.A., van Wely M., Ven der Post J.A., Goddijn M., Bisschop P.H. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2016; 22 (4): 532–3. doi: 10.1093/humupd/dmw003. Erratum for: Hum Reprod Update. 2011;17(5):605-19.
  20. Pandey M.K., Rani R., Agrawal S. An update in recurrent spontaneous abortion. Arch Gynecol Obstet. 2005; 272 (2): 95–108. doi: 10.1007/s00404-004-0706-y
  21. Huang N., Chi H., Qiao J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front Immunol. 2020; 11: 1023. doi: 10.3389/fimmu.2020.01023
  22. Wang W., Sung N., Gilman-Sachs A., Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol. 2020; 11: 2025. doi: 10.3389/fimmu.2020.02025
  23. Ali S., Majid S., Ali M.N., Taing S., Rehman M.U., Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol. 2021; 90: 107118. doi: 10.1016/j.intimp.2020.107118
  24. Svensson-Arvelund J., Mehta R.B., Lindau R., Mirrasekhian E., Rodriguez-Martinez H., Berg G., Lash G.E., Jenmalm M.C., Ernerudh J. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J. Immunol. 2015; 194 (4): 1534–44. doi: 10.4049/jimmunol.1401536.
  25. Артемьева К.А., Богданова И.М., Степанова И.И., Болтовская М.Н., Степанов А.А., Пономаренко Е.А., Калюжин О.В., Земляков А.Е., Дамбаева С.В. Особенности морфофункционального состояния маточно-плацентарной единицы и эмбриона мыши на ранних сроках экспериментального невынашивания беременности. Клин. эксп. морфология. 2020; 9 (3): 50–60. doi: 10.31088/CEM2020.9.3.50-60. [Artemyeva K.A., Bogdanova I.M., Stepanova I.I., Boltovskaya M.N., Stepanov A.A., Ponomarenko E.A., Kalyuzhin O.V., Zemlyakov A.E.,Dambaeva S.V. Morphofunctional features of the uteroplacental unit and mouse embryo in the early stages of experimental miscarriage. Clin. exp. morphology. 2020; 9 (3): 50–60. doi: 10.31088/CEM2020.9.3.50-60 (in Russian)]
  26. Ding J., Yin T., Yan N., Cheng Y., Yang J. FasL on decidual macrophages mediates trophoblast apoptosis: A potential cause of recurrent miscarriage. Int. J. Mol. Med. 2019; 43 (6): 2376–86. doi: 10.3892/ijmm.2019.4146.
  27. Qian Z.D., Huang L.L., Zhu X.M. An immunohistochemical study of CD83- and CD1a-positive dendritic cells in the decidua of women with recurrent spontaneous abortion. Eur. J. Med. Res. 2015; 20 (1): 2. doi: 10.1186/s40001-014-0076-2.
  28. Boyson J.E., Nagarkatti N., Nizam L., Exley M.A., Strominger J.L. Gestation stage-dependent mechanisms of invariant natural killer T cell-mediated pregnancy loss. Proc Natl Acad Sci USA. 2006; 103 (12): 4580–5. doi: 10.1073/pnas.0511025103
  29. Negishi Y., Ichikawa T., Takeshita T., Takahashi H. Miscarriage induced by adoptive transfer of dendritic cells and invariant natural killer T cells into mice. Eur. J. Immunol. 2018; 48 (6): 937–49. doi: 10.1002/eji.201747162.
  30. Huang C., Zeng Y., Tu W. The role of γδ-T cells during human pregnancy. Am. J. Reprod Immunol. 2017; 78 (2): 10.1111/aji.12713. doi: 10.1111/aji.12713
  31. Fan D.X., Duan J., Li M.Q., Xu B., Li D.J., Jin L.P. The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin Immunol. 2011; 141 (3): 284–92. doi: 10.1016/j.clim.2011.07.008.
  32. Xu Q.H., Liu H., Wang L.L., Zhu Q., Zhang Y.J., Muyayalo K.P., Liao A.H. Roles of γδT cells in pregnancy and pregnancy-related complications. Am. J. Reprod Immunol. 2021; 86 (5): e13487. doi: 10.1111/aji.13487.
  33. Li D., Zheng L., Zhao D., Xu Y., Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci. 2021; 28 (12): 3303–15. doi: 10.1007/s43032-021-00599-y.
  34. Artis D., Spits H. The biology of innate lymphoid cells. Nature. 2015; 517 (7534): 293–301. doi: 10.1038/nature14189
  35. Chang R.Q., Zhou W.J., Li D.J., Li M.Q. Innate Lymphoid Cells at the Maternal-Fetal Interface in Human Pregnancy. Int. J. Biol. Sci. 2020; 16 (6): 957–69. doi: 10.7150/ijbs.38264
  36. Miller D., Motomura K., Garcia-Flores V., Romero R., Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol. 2018; 9: 2396. doi: 10.3389/fimmu.2018.02396
  37. Tang L.C., Xu X.H., Jin L.P. Molecular characteristics and possible functions of innate lymphoid cells in the uterus and gut. Cytokine Growth Factor Rev. 2020; 52: 15–24. doi: 10.1016/j.cytogfr.2019.11.003
  38. Robson A., Harris L.K., Innes B.A., Lash G.E., Aljunaidy M.M., Aplin J.D., Baker P.N., Robson S.C., Bulmer J.N. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J. 2012; 26 (12): 4876–85. doi: 10.1096/fj.12-210310.
  39. Chen X., Liu Y., Cheung W.C., Zhao Y., Huang J., Chung J.P.W., Wang C.C., Li T.C. Increased expression of angiogenic cytokines in CD56+ uterine natural killer cells from women with recurrent miscarriage. Cytokine. 2018; 110: 272–6. doi: 10.1016/j.cyto.2018.01.013.
  40. Fu Y.Y., Ren C.E., Qiao P.Y., Meng Y.H. Uterine natural killer cells and recurrent spontaneous abortion. Am. J. Reprod Immunol. 2021; 86 (2): e13433. doi: 10.1111/aji.13433
  41. Guerrero B., Hassouneh F., Delgado E., Casado J.G., Tarazona R. Natural killer cells in recurrent miscarriage: An overview. J. Reprod Immunol. 2020; 142: 103209. doi: 10.1016/j.jri.2020.103209.
  42. Vacca P., Mingari M.C., Moretta L. Natural killer cells in human pregnancy. J. Reprod Immunol. 2013; 97 (1): 14–9. doi: 10.1016/j.jri.2012.10.008
  43. Yang X., Tian Y., Zheng L., Luu T., Kwak-Kim J. The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int. J. Mol. Sci. 2022; 24 (1): 132. doi: 10.3390/ijms24010132
  44. Plaçais L., Kolanska K., Kraiem Y.B., Cohen J., Suner L., Bornes M., Sedille L., Rosefort A., D’Argent E.M., Selleret L., Abisror N., Johanet C., Buffet N.C., Darai E., Antoine J.M., Fain O., Kayem G., Mekinian A. Intralipid therapy for unexplained recurrent miscarriage and implantation failure: Case-series and literature review. Eur. J. Obstet Gynecol Reprod Biol. 2020; 252: 100–4. doi: 10.1016/j.ejogrb.2020.06.017.
  45. Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod Immunol. 2010; 63 (6): 601–10. doi: 10.1111/j.1600-0897.2010.00852.x.
  46. Nancy P., Erlebacher A. T cell behavior at the maternal-fetal interface. Int. J. Dev Biol. 2014; 58 (2–4): 189–98. doi: 10.1387/ijdb.140054ae
  47. Piccinni M.P., Robertson S.A., Saito S. Editorial: Adaptive Immunity in Pregnancy. Front Immunol. 2021; 12: 770242. doi: 10.3389/fimmu.2021.770242
  48. Makhseed M., Raghupathy R., Azizieh F., Omu A., Al-Shamali E., Ashkanani L. Th1 and Th2 cytokine profiles in recurrent aborters with successful pregnancy and with subsequent abortions. Hum Reprod. 2001; 16 (10): 2219–26. doi: 10.1093/humrep/16.10.2219
  49. Piccinni M.P., Lombardelli L., Logiodice F., Kullolli O., Romagnani S., Le Bouteiller P. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy. Clin. Mol. Allergy. 2015; 13 (1): 9. doi: 10.1186/s12948-015-0015-y
  50. Yang H., Qiu L., Chen G., Ye Z., Lü C., Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2008; 89 (3): 656–61. doi: 10.1016/j.fertnstert.2007.03.037
  51. Zenclussen A.C., Gerlof K., Zenclussen M.L., Sollwedel A., Bertoja A.Z., Ritter T., Kotsch K., Leber J., Volk H.D. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol. 2005; 166 (3): 811–22. doi: 10.1016/S0002-9440(10)62302-4.
  52. Sasaki Y., Sakai M., Miyazaki S., Higuma S., Shiozaki A., Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum Reprod. 2004; 10 (5): 347–53. doi: 10.1093/molehr/gah044
  53. Yie S.M., Li L.H., Li G.M., Xiao R., Librach C.L. Progesterone enhances HLA-G gene expression in JEG-3 choriocarcinoma cells and human cytotrophoblasts in vitro. Hum Reprod. 2006; 21 (1): 46–51. doi: 10.1093/humrep/dei305.
  54. Areia A.L., Vale-Pereira S., Vaz-Ambrósio A., Alves V., Rodrigues-Santos P., Rosa M.S., Moura P., Mota-Pinto A. Does progesterone administration in preterm labor influence Treg cells? J. Perinat Med. 2016; 44 (6): 605–11. doi: 10.1515/jpm-2015-0134.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies