Comparison of the sensitivity of restriction analysis and PCR with high-resolution melting curve analysis for the detection of the R882H mutation in the DNMT3A gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. DNMT3A is one of the most frequently mutated genes in acute myeloid leukemia (AML), and the R882H (G>A) substitution is one of the most common mutations in this gene. Restriction analysis and high resolution melting (HRM) analysis are the most common methods used to detect this mutation, but the sensitivity of these approaches varies greatly from study to study.

Purpose of the study. Determine the sensitivity of commonly used methods for assessing the R882H mutation content of a sample under controlled conditions.

Methods. We compared the sensitivity of restriction analysis and HRM on presynthesized DNA samples with varying levels of mutant template in the sample and provided detailed protocols for reproducing our results by other researchers.

Results. We found that the detection limit of the R882H mutation in the DNMT3A gene was 20% for restriction analysis and 40% for HRM.

Conclusion. The results obtained in this work are important for identifying restriction analysis and HRM as suitable methods for use in laboratory diagnosis of the R882H mutation for patients with AML with a high mutational load.

Full Text

Restricted Access

About the authors

Elizaveta D. Kulaeva

Southern Federal University, Academy of Biology and Biotechnology

Email: ekulaeva@sfedu.ru
ORCID iD: 0000-0001-5886-7975

Research Assistant, Research Laboratory «Developmental Biology and Genome Organization» of Genetics Department

Russian Federation, Stachki Ave. 194/1, Rostov-on-Don, 344090

Elizaveta S. Muzlaeva

Southern Federal University, Academy of Biology and Biotechnology

Author for correspondence.
Email: ekulaeva@sfedu.ru
ORCID iD: 0000-0002-4344-4221

Bachelor student, Human and Animal Genetics Research Laboratory

Russian Federation, Stachki Ave. 194/1, Rostov-on-Don, 344090

Pavel V. Lipilkin

Rostov State Medical University, Department of Hematology and Transfusiology (with courses in clinical laboratory diagnostics, genetics and laboratory genetics); Don State Technical University, Department of Biology and General Pathology

Email: plipilkin@donstu.ru
ORCID iD: 0000-0002-3220-2753

Graduate student, Department of Hematology and Transfusiology (with courses of clinical laboratory diagnostics, genetics and laboratory genetics), Senior Lecturer, Department of Biology and General Pathology

Russian Federation, per. Nakhichevansky, 29, Rostov-on-Don, 344022; pl. Gagarina, 1, Rostov-on-Don, 344000

Elena V. Mashkina

Southern Federal University, Academy of Biology and Biotechnology

Email: lenmash@sfedu.ru
ORCID iD: 0000-0002-4424-9508

Head of Research Laboratory «Human and Animal Genetics», Doctor of Biological Sciences, Professor

Russian Federation, Stachki Ave. 194/1, Rostov-on-Don, 344090

References

  1. De Kouchkovsky I., Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016; 6 (7): e441. https://doi.org/10.1038/bcj.2016.50.
  2. Hou H.A., Tien H.F. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci. 2020; 27 (1): 81. https://doi.org/10.1186/s12929-020-00674-7.
  3. Que Y., Li H., Lin L., Zhu X., Xiao M., Wang Y., Zhu L., Li D. Study on the Immune Escape Mechanism of Acute Myeloid Leukemia With DNMT3A Mutation. Front Immunol. 2021; 12: 653030. https://doi.org/10.3389/fimmu.2021.653030.
  4. Venugopal K., Feng Y., Shabashvili D., Guryanova O.A. Alterations to DNMT3A in Hematologic Malignancies. Cancer Res. 2021; 81 (2): 254–63. https://doi.org/10.1158/0008-5472.CAN-20-3033.
  5. Rajavelu A., Jurkowska R.Z., Fritz J., Jeltsch A. Function and disruption of DNA Methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation. Nucleic Acids Res. 2012; 40 (2): 569–80. https://doi.org/10.1093/nar/gkr753.
  6. Anteneh H., Fang J., Song J. Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat. Commun. 2020; 11 (1): 1–12. https://doi.org/10.1038/s41467-020-16213-9.
  7. Guryanova O.A., Shank K., Spitzer B., Luciani L., Koche R.P., Garrett-Bakelman F.E., Ganzel C., Durham B.H., Mohanty A., Hoermann G., Rivera S.A., Chramiec A.G., Pronier E., Bastian L., Keller M.D., Tovbin D., Loizou E., Weinstein A.R., Gonzalez A.R,. Lieu Y.K., Rowe J.M., Pastore F., McKenney A.S., Krivtsov A.V., Sperr W.R., Cross J.R., Mason C.E., Tallman M.S., Arcila M.E., Abdel-Wahab O., Armstrong S.A., Kubicek S., Staber P.B., Gönen M., Paietta E.M., Melnick A.M., Nimer S.D., Mukherjee S., Levine R.L. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat. Med. 2016; 22 (12): 1488–95. https://doi.org/10.1038/nm.4210.
  8. Hou H.A., Kuo Y.Y., Liu C.Y., Chou W.C., Lee M.C., Chen C.Y., Lin LI, Tseng M.H., Huang C.F., Chiang Y.C., Lee F.Y., Liu M.C., Liu C.W., Tang J.L., Yao M., Huang S.Y., Ko B.S., Hsu S.C., Wu S.J., Tsay W., Chen Y.C., Tien H.F. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012; 119 (2): 559–68. https://doi.org/10.1182/blood-2011-07-369934.
  9. Berenstein R., Blau I.W., Suckert N., Baldus C., Pezzutto A., Dörken B., Blau O. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J. Exp. Clin. Cancer Res. 2015; 34 (1): 55. https://doi.org/10.1186/s13046-015-0173-2.
  10. Singh R.R., Bains A., Patel K.P., Rahimi H., Barkoh B.A., Paladugu A., Bisrat T., Ravandi-Kashani F., Cortes J.E., Kantarjian H.M., Medeiros L.J., Luthra R. Detection of High-Frequency and Novel DNMT3A Mutations in Acute Myeloid Leukemia by High-Resolution Melting Curve Analysis. J. Mol. Diagn. 2012; 14 (4): 336–45. https://doi.org/10.1016/j.jmoldx.2012.02.009.
  11. Berenstein R., Blau I.W., Kar A., Cay R., Sindram A., Seide C., Blau O. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J. Exp. Clin. Cancer Res. 2014; 33 (1): 44. https://doi.org/10.1186/1756-9966-33-44.
  12. Gonzalez-Bosquet J., Calcei J., Wei J.S., Garcia-Closas M., Sherman M.E., Hewitt S., Vockley J., Lissowska J., Yang H.P., Khan J., Chanock S. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers. PLoS One. 2011; 6 (1): 14522. https://doi.org/10.1371/journal.pone.0014522.
  13. Jeziskova I., Musilova M., Culen M., Foltankova V., Dvorakova D., Mayer J., Racil Z. Distribution of mutations in DNMT3A gene and the suitability of mutations in R882 codon for MRD monitoring in patients with AML. Int. J. Hematol. 2015; 102 (5): 553–7. https://doi.org/10.1007/s12185-015-1856-3.
  14. Do H., Dobrovic A. Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies. Mol Cancer. 2009; 8: 82. https://doi.org/10.1186/1476-4598-8-82.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of restriction analysis to identify the R882H mutation. wt-DNA wild type, mut - mutant DNA, 5–50 - samples with 5–50% mutant DNA in wild type DNA

Download (36KB)
3. Fig. 2. Melting curve plot for wild type (0%) and R882H (100%) homozygotes and R882H heterozygotes (50%). The X axis is the melting temperature, °C. Y axis - reporter dye fluorescence signal, relative fluorescence units

Download (281KB)
4. Fig. 3. Comparison of melting temperatures of samples with different DNA contents with the R882H mutation. The X axis is the content of mutant DNA in the sample, %; along the Y axis - melting temperature, °C

Download (71KB)

Copyright (c) 2023 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies