Diagnostic significance of antioxidant protection indicators for assessing the course of post-Covid syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. An increasing number of reports of long-term negative consequences of COVID-19, characterized by chronic inflammation, tissue hypoxia, oxidative stress, metabolic changes at the level of all body systems, determines the search for criteria for assessing long-term post-Covid syndrome. A high level of information content of saliva as samples for laboratory diagnosis of respiratory syndromes has been shown. The fact that SARS-CoV-2 is present in saliva in high concentrations suggests that saliva studies will provide rapid acquisition of useful information about the pathogenesis of post-Covid syndrome, allows us to identify the most vulnerable areas of metabolic processes and target them in combination with other rehabilitation measures.

Purpose of the study: to evaluate the state of antioxidant protection and indicators of resistance to hypoxia in patients in the post-Covid period 6 monthes after the manifestation of the infectious process caused by SARS-CoV-2, according to biochemical analysis of saliva.

Material and methods. 58 people participated in the study. 28 people

control group, who denied the fact of the disease; 30 people

a comparison group who suffered a new coronavirus infection of moderate severity, confirmed by PCR. The concentrations of pyruvic acid, lactic acid, reduced glutathione, the activity of glutathione reductase, glutathione peroxidase, myeloperoxidase, and ceruloplasmin were determined in saliva.

Results. In the saliva of patients in the post-Covid period, there is a pronounced increase in myeloperoxidase activity, which indicates a chronic inflammatory process. An increase in ceruloplasmin activity indicates a deficiency of iron and copper, which are necessary for oxidative phosphorylation and cellular respiration. A change in the ratio of lactate to pyruvate indicates the accumulation of NADH2, so to change the Redox status of the body, characteristic of hypoxic conditions. A decrease in the activity of enzymes of the glutathione system was noted, which reflects the inhibition of the processes of AOD and mitochondrial oxidation.

Conclusion. A set of indicators characterizing AOD, the ratio of aerobic and anaerobic processes, iron and copper transport, provides information about the peculiarities of the course of the post-Covid syndrome, which substantiates the correction paths associated with restoring glutathione levels, indicators of iron and copper metabolism and increasing resistance to hypoxic processes.

Full Text

Restricted Access

About the authors

Zoya I. Mikashinovich

Federal State Budgetary Educational Institution of Higher Education "Rostov State Medical University" Ministry of Health of the Russian Federation

Author for correspondence.
Email: mikashinovich@gmail.com
ORCID iD: 0000-0001-9906-8248

professor of the department general and clinical biochemistry №1, Doctor. bio. sci., professor

Russian Federation, Nakhichevansky lane, 29, Rostov-on-Don, 344022

Natalia R. Telesmanich

Federal State Budgetary Educational Institution of Higher Education "Rostov State Medical University" Ministry of Health of the Russian Federation

Email: telesmanich.nr@gmail.com
ORCID iD: 0000-0002-1906-6312

professor of the department general and clinical biochemistry №1, Doctor. bio. sci., professor

Russian Federation, Nakhichevansky lane, 29, Rostov-on-Don, 344022

Olga B. Smirnova

Federal State Budgetary Educational Institution of Higher Education "Rostov State Medical University" Ministry of Health of the Russian Federation

Email: zolochevskaj51@mail.ru
ORCID iD: 0000-0003-4402-2474

senior lecturer of the department general and clinical biochemistry №1

Russian Federation, Nakhichevansky lane, 29, Rostov-on-Don, 344022

Ani S. Kirakosyan

Federal State Budgetary Educational Institution of Higher Education "Rostov State Medical University" Ministry of Health of the Russian Federation

Email: anikirakosan1@gmail.com
ORCID iD: 0009-0009-3050-5839

2nd year student of the Faculty of Pediatrics

Russian Federation, Nakhichevansky lane, 29, Rostov-on-Don, 344022

References

  1. Стаценко М.Е., Туркина С.В., Лопушкова Ю.Е. Новые данные о хорошо известном препарате: фокус на мельдоний. Медицинскийсовет. 2021; 14: 110–7. https://doi.org/10.21518/2079-701X-2021-14-110-117. [Statsenko M.E., Turkina S.V., Lopushkova Yu.E. New data on a well-known drug: focus on meldonium. Medical advice. 2021; 14: 110–7. https://doi.org/10.21518/2079-701X-2021-14-110-117 (in Russian)]
  2. Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS– CoV, MERS
  3. CoV, and 2019-nCoV. J. Med. Virol. 2020; 92 (5): 491–4.https://doi.org/10.1002/jmv.25709.
  4. Rudroff T., Fietsam A.C., Deters J.R., Bryant A.D., Kamhol J. Post COVID-19 Fatigue: Potential Contributing Factors. BrainSci. 2020; 10 (12): 1012. https://doi.org/10.3390/brainsci10121012.
  5. Гриневич В.Б., Кравчук Ю.А., Педь В.И., Сас Е.Л., Саликова С.П., Губонина И. В., Ткаченко Е. И., Ситкин С. И., Лазебник Л. Б., Голованова Е. В. Ведение пациентов с заболеваниями органов пищеварения в период пандемии COVID-19. Клинические рекомендации Научного общества гастроэнтерологов России. Экспериментальная и клиническая гастроэнтерология. 2020; 179 (7): 4–51. doi: 10.31146/1682-8658-ecg-179-7-4-51 [Grinevich V.B., Kravchuk Yu.A., Ped V.I., Sas E.L., Salikova S.P., Gubonina I.V., Tkachenko E.I., Sitkin S.I., Lazebnik L. B., Golovanova E. V. Management of patients with diseases of the digestive system during the COVID-19 pandemic. Clinical recommendations of the Scientific Society of Gastroenterologists of Russia. Experimental and clinical gastroenterology. 2020; 179 (7): 4–51. doi: 10.31146/1682-8658-ecg-179-7-4-51 (in Russian)]
  6. Чой Е.Д. «Долгийковид» (постковидныйсиндром). Механизм возникновения, диагностика и реабили-тация. Медицинскийсовет. 2021; 21–1: 156–64. https://doi.org/10.21518/2079-701X-2021-21-1-156-16. [Choi E.D. "Long covid" (post-covid syndrome). The mechanism of occurrence, diagnosis and rehabilitation. Medical advice. 2021; 21–1: 156–64. https://doi.org/10.21518/2079-701X-2021-21-1-156-16 (in Russian)]
  7. Xu H., Zhong L., Deng J., et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020; 12: 8. doi: 10.1038/s41368–20–0074-x
  8. Гудима Г.О., Хаитов Р.М., Кудлай Д.А., Хаитов М.Р. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции. Иммунология. 2021; 42 (3): 198–210. DOI: https://doi.org/10.33029.0206-4952-2021-42-3-198-210 [Gudima G.O., Khaitov R.M., Kudlai D.A., Khaitov M.R. Molecular and immunological aspects of the diagnosis, prevention and treatment of coronavirus infection. Immunology. 2021; 42 (3): 198–210. DOI: https://doi.org/10.33029.0206-4952-2021-42-3-198-210 (in Russian)]
  9. Власова Т.И., Спирина М.А., Арсентьева Е.В., Шамрова Е.А., Ситдикова А.В. Патогенетические механизмы неврологического постковидного синдрома и основы его патогенетического лечения и профилактики (обзор литературы). Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2021; 4: 129–42. doi: 10.21685/2072-3032-2021-4-11. [Vlasova T.I., Spirina M.A., Arsent'eva E.V., Shamrova E.A., Sitdikova A.V. Pathogenetic mechanisms of neurological post-covid syndrome and the basis of its pathogenetic treatment and prevention (literature review). News of higher educational institutions. Volgaregion. MedicalSciences. 2021; 4: 129–42. doi: 10.21685/2072-3032-2021-4-11 (in Russian)]
  10. Донина Ж.А., Баранова Е.В., Александрова Н.П. Влияние ингибирования циклооксигеназных путей на резистентность к нарастающей гипоксии у крыс с повышенным уровнем интерлейкина- 1бета //Российский физиологический журнал имени И.М. Сеченова. 2020; 106 (11): 1400–11. doi: 10.31857/S0869813920110047. [Donina Zh.A., Baranova E.V., Aleksandrova N.P. Influence of inhibition of cyclooxygenase pathways on resistance to increasing hypoxia in rats with elevated levels of interleukin-1beta. Russian Journal of Physiology named after I.M. Sechenov. 2020; 106 (11): 1400–11. doi: 10.31857/S0869813920110047 (in Russian)]
  11. Archer S.L., Sharp W.W., Weir E.K. Differentiating COVID-19 Pneumonia from Acute Respiratory Distress Syndrome (ARDS) and High Altitude Pulmonary Edema (HAPE): Therapeutic Implications. Circulation. 2020; 142 (2): 101–4. Available at: https://doi.org/10.1161/circulationaha.120.047915
  12. Kempuraj D., Selvakumar G.P., Ahmed M.E., Raikwar S.P., Thangavel R., Khan A. COVID-19, Mast Cells, Cyto-kine Storm, Psychological Stress, and Neuroinflammation. The Neuroscientist. 2020; 26 (5–6): 402–14. doi: 10.1177/1073858420941476.
  13. Bostanciklioglu M. Temporal Correlation Between Neurological and Gastrointestinal Symptoms ofSARS–Cov–2. Inflammatory bowel diseases. 2020; 26 (8): 89–91. URL: https://doi.org/10.1093/ibd/izaa 131.
  14. Adhikari U., Chabrielie A., Wier M., Boehnke K. A coss evaluating the risk of infection from Middle Eeastern respiratore syndrome coronavirus MERS in a hospital setting though bioaerosols. Risk Anal. 2019; 39 (12): 2608–24.
  15. Камышников В.С. Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. М.: МЕД пресс-информ, 2004; 920. [Kamyshnikov V.S. Handbook of clinical and biochemical studies and laboratory diagnostics M.: MED press-inform, 2004; 920 (in Russian)]
  16. Справочник по лабораторным методам исследований. Под ред. Л.А. Даниловой. Издательский Дом ПИТЕР, 2003; 736. [Handbook of laboratory research methods. Ed. L.A. Danilova. Publishing House PITER, 2003; 736 (in Russian)]
  17. Sakamoto W., Fujii Y., Kanehira T., Asano K., Izumi H. Novel assay system for myeloperoxidase activity in whole saliva. Clinical Biochemistry. 2008; 41: 584–90.
  18. Кабанова А.А., Окулич В.К., Богдан И.Ю. 2011. Миелопероксидаза ротовой жидкости у пациентов с одонтогенными флегмонами. Вестник ВГМУ. 2011; 10 (1): 149–53. [Kabanova A.A., Okulich V.K., Bogdan I.Yu. 2011. Myeloperoxidase of the oral fluid in patients with odontogenic phlegmon. Bulletinof VSMU. 2011; 10 (1): 149–53 (in Russian)]
  19. Ващенко В.И., Ващенко Т.Н. Биология и фармакология церулоплазмина: от эксперимента до лекарственной терапии. Обзоры по клинической фармакологии и лекарственной терапии. 2008; 6 (1): 31–6. [Vashchenko V.I., Vashchenko T.N. Biology and pharmacology of ceruloplasmin: from experiment to drug therapy. Reviews of clinical pharmacology and drugtherapy. 2008; 6 (1): 31–6 (in Russian)]
  20. Быкова Е.В., Соголовская Е.С., Сотникова Т.О., Габриэль П.Г. Вестник Оренбургского государственного университета. 2015; 12: 187. [Bykova E.V., Sogolovskaya E.S., Sotnikova T.O., Gabriel P.G. Bulletin of the Orenburg State University. 2015; 12: 187 (in Russian)]

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies