Induction of hyperglycemia and accompanying biochemical and genotoxic changes in mice of different strains by tyloxapol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Hyperglycemia inducers, the «classic» diabetogens streptozotocin and alloxan have a pronounced effect and are therefore limited suitable for modeling mild hyperglycemia in an experiment. Tyloxapol (Triton WR1339) was chosen as an alternative agent for modeling a moderate increase in blood glucose concentration in experimental animals based on literature data.

The purpose of the study. The aim of the work was to investigate the possibility of tyloxapol to induce hyperglycemia and concomitant biochemical and genotoxic changes in mice of the common C57BL/6, CBA/lac and ICR lines.

Methods. Hyperglycemia was modeled by single or multiple administration of tiloxapol at a dose of 400 mg/kg intraperitoneally. 24 hours after the last injection of tyloxapol, glucose and lipid levels were determined in mouse blood samples, DNA damage was assessed in organs by the DNA comet method, and chromosomal aberrations were recorded in bone marrow cells.

Results. It was found that tyloxapol at a dose of 400 mg/kg with different modes of administration to mice of different lines similarly causes moderate hyperglycemia and a significant increase in triglycerides, total cholesterol and low-density lipoproteins, as well as an increase in DNA damage, which is considered as a trigger for many complications in diabetes.

Conclusion. The data obtained in mice are consistent with the literature data on the hyperglycemic activity of tyloxapol, previously established in rats, and demonstrate characteristic biochemical and genotoxic effects in mice of different lines, with less severity in animals of the ICR line. In general, the data obtained indicate the possibility of using tiloxapol to model experimental diabetes in mice.

Full Text

Restricted Access

About the authors

Kirill S. Kachalov

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Author for correspondence.
Email: kkachalov@mail.ru
ORCID iD: 0000-0003-1340-5034

graduate student, junior researcher Laboratory of Genetic and Reproductive Toxicology of the Drug Toxicology Department

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

Anna S. Solomina

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: annsolomina@yandex.ru
ORCID iD: 0000-0001-7048-4993

leading researcher of Laboratory of Genetic and Reproductive Toxicology of the Drug Toxicology Department, Candidate of Biological Sciences

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

Anastasia V. Rodina

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: an.vl.rodina@gmail.com
ORCID iD: 0009-0002-4238-050X

junior researcher of Laboratory of Genetic and Reproductive Toxicology of the Department of the Drug Toxicology Department

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

Alla V. Kulakova

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: allakulak@mail.ru
ORCID iD: 0000-0002-6959-2150

senior researcher of Laboratory of Genetic and Reproductive Toxicology of the Department of the Drug Toxicology Department, Candidate of Biological Sciences

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

Alii K. Zhanataev

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: zhanataev_ak@academpharm.ru
ORCID iD: 0000-0002-7673-8672

head of the laboratory of Laboratory of Genetic and Reproductive Toxicology of the Department of the Drug Toxicology Department, Candidate of Biological Sciences

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

Andrey D. Durnev

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: durnev@academpharm.ru
ORCID iD: 0000-0003-0218-8580

head of Drug Toxicology Department, Dr. Sci (Med.), professor, corresponding member RAS

Russian Federation, Baltiyskaya street, 8, Moscow, 125315

References

  1. International Diabetes Federation. International Diabetes Federation’s diabetes epidemiology guide [Электронный ресурс]. 2021. URL: https://diabetesatlas.org (дата обращения 23.11.2023).
  2. Еремина Н.В., Жанатаев А.К., Лисицын А.А., Дурнев А.Д. Генотоксические маркеры у больных сахарным диабетом (обзор литературы). Экологическая генетика. 2021; 19 (2): 143–68. doi: 10.17816/ecogen65073. [Eremina N.V., Zhanataev A.K., Lisicyn A.A., Durnev A.D. Genotoxic markers in patients with diabetes mellitus (Literature review). Ecological genetics. 2021; 19 (2): 143–68 (in Russian). doi: 10.17816/ecogen65073]
  3. Озерова И.В., Тарабан К.В., Ягубова С.С., Островская Р.У. Современное состояние проблемы моделирования сахарного диабета. Экспериментальная и клиническая фармакология. 2017; 80 (12): 35–43. doi: 10.30906/0869-2092-2017-80-12-35-43. [Ozerova I.V., Taraban K.V., Jagubova S.S., Ostrovskaja R.U. Current state-of-the-art in diabetes modeling. Jeksperimental’naja i klinicheskaja farmakologija. 2017; 80 (12): 35–43 (in Russian). doi: 10.30906/0869-2092-2017-80-12-35-43]
  4. Sasase T, Pezzolesi M.G., Yokoi N, Yamada T, Matsumoto K. Animal models of diabetes and metabolic disease. J. Diabetes Res. 2013; 2013: 281928. doi: 10.1155/2013/281928
  5. Bolzán A.D., Bianch M.S. Genotoxicity of Streptozotocin. Mutation Research/Reviews in Mutation Research. 2002; 512 (2–3): 121–34. doi: 10.1016/s1383-5742(02)00044-3
  6. Anandhi R, Annadurai T, Anitha T.S., Muralidharan A.R., Najmunnisha K., Nachiappan V., Thomas P.A, Geraldine P. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem. 2013; 69 (2): 313–23. doi: 10.1007/s13105-012-0215-6
  7. De Sousa J.A., Pereira P., da Costa Allgayer M., Marroni N.P., Ferraz A.D.B.F., Picada J.N. Evaluation of DNA damage in Wistar rat tissues with hyperlipidemia induced by tyloxapol. Exp Mol Pathol. 2017; 103 (1): 51–5. doi: 10.1016/j.yexmp.2017.06.009
  8. Brito-Casillas Y., Melián C., Wägner A.M. Study of the pathogenesis and treatment of diabetes mellitus through animal models. Endocrinol Nutr. 2016; 63 (7): 345–53. doi: 10.1016/j.endonu.2016.03.011
  9. Решение Совета ЕЭК от 3 ноября 2016 г. №81 Об утверждении Правил надлежащей лабораторной практики Евразийского экономического Союза в сфере обращения лекарственных средств. [The Decision of the Council of the Eurasian Economic Commission dated November 3, 2016 №81 «Ob utverzhdenii pravil nadlezhashchei laboratornoi praktiki Evraziiskogo ekonomicheskogo soyuza v sfere obrashcheniya lekarstvennykh sredstv» (in Russian).] Доступно по: https://docs.eaeunion.org/docs/ru-ru/01211928/cncd_21112016_81.
  10. ГОСТ 33215–2014 Руководство по содержанию и уходу за лабораторными животными. Правила оборудования помещений и организации процедур. Переиздание). Межгосударственный стандарт Руководство по содержанию и уходу за лабораторными животными. М.: Стандартинформ, 2019; 20. [GOST 33215–2014 Guidelines for the maintenance and care of laboratory animals. Rules for equipment of premises and organization of procedures. Reissue). Interstate standard Guide for the maintenance and care of laboratory animals. M. Standardinform, 2019; 20 (in Russian)].
  11. ГОСТ 33216–2014 Руководство по содержанию и уходу за лабораторными животными. Правила содержания и ухода за лабораторными грызунами и кроликами. Переиздание). Межгосударственный стандарт Руководство по содержанию и уходу за лабораторными животными. М.: Стандартинформ, 2019; 16. [GOST 33216–2014 Guidelines for the maintenance and care of laboratory animals. Rules for keeping and caring for laboratory rodents and rabbits. Reissue). Interstate standard Guide for the maintenance and care of laboratory animals. M.: Standardinform, 2019; 16 (in Russian)].
  12. Жанатаев А.К., Никитина В.А., Воронина Е.С., Дурнев А.Д. Методические аспекты оценки ДНК-повреждений методом ДНК-комет. Приклад. токсикол. 2011; 2 (4): 28–37. [Zhanataev A.K., Nikitina V.A., Voronina E.S., Durnev A.D. Methodological aspects of DNA damage assessment using comet assay. Priklad. Toksikol. 2011; 2 (4): 28–37 (in Russian)]
  13. Дурнев А.Д., Меркулов В.А., Жанатаев А.К., Никитина В.А., Воронина Е.С., Середенин С.Б. Методические рекомендации по оценке ДНК-повреждений методом щелочного гель-электрофореза отдельных клеток в фармакологических исследованиях. Руководство по проведению доклинических исследований лекарственных средств. Научный центр экспертизы средств медицинского применения Минздравсоцразвития России. М: Гриф и К, 2012. [Durnev A.D., Merkulov V.A., Zhanataev A.K., Nikitina V.A., Voronina E.S., Seredenin S.B. Metodicheskie rekomendatsii po otsenke DNK-povrezhdenii metodom shchelochnogo gel’-elektroforeza otdel’nykh kletok v farmakologicheskikh issledovaniyakh. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Nauchnyi tsentr ekspertizy sredstv meditsinskogo primeneniya Minzdravsotsrazvitiya Rossii. M: Grif i K, 2012 (in Russian)]
  14. Preston R.J., Dean B.J., Galloway S., Holden H., Mc Fee A.F., Shelby M. Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations in bone marrow cells. Mutat Res. 1987; 189: 157–65.
  15. Savage J.R. Classification and relationships of induced chromosomal structural changes. J Med Genet. 1976; 13 (2): 103–22.
  16. Дурнев А.Д., Жанатаев А.К., Еремина Н.В. Генетическая токсикология. М.: ООО «Типография «Миттель Пресс», 2022, 286. [Durnev A.D., Zhanataev A.K., Eremina N.V. Genetic toxicology. M.: Mittel Press Printing House, 2022; 286 (in Russian)].
  17. Tonini C.L., Campagnaro B.P., Louro L.P., Pereira T.M., Vasquez E.C., Meyrelles S.S. Effects of aging and hypercholesterolemia on oxidative stress and DNA damage in bone marrow mononuclear cells in apolipoprotein E-deficient mice. Int J Mol Sci, Int. 2013; 14 (2): 3325–42. doi: 10.3390/ijms14023325
  18. Jung B.C., Kim H.K., Kim S.H., Kim Y.S. Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8. BMB reports. 2023; 56 (3): 166–71. doi: 10.5483/bmbrep.2022-0201
  19. Al-Goblan A.S., Al-Alfi M.A., Khan M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014; 7: 587–91 doi: 10.2147/DMSO.S67400
  20. Dedov I., Tkachuk V., Gusev N., Shirinsky V., Vorotnikov A. Kochegura T., Mayorov A., Shestakova M. Type 2 diabetes and metabolic syndrome: Identification of the molecular mechanisms, key signaling pathways and transcription factors aimed to reveal new therapeutical targets. Diabetes mellitus. 2018; 21: 364–75. doi: 10.14341/DM9730.
  21. Kato T., Shimano H; Yamamoto T; Ishikawa M., Kumadaki S., Matsuzaka T., Nakagawa Y., Yahagi N., Nakakuki M., Hasty A.H., Takeuchi Y., Kobayashi K., Takahashi A., Yatoh S., Suzuki H., Sone H., Yamada N. Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP1c in pancreatic islets. Diabetes. 2008; 57 (9): 2382–92. doi: 10.2337/db06-1806
  22. Baena M., Sangüesa G., Dávalos A., Latasa M.J., Sala-Vila A., Sánchez R.M., Roglans N., Laguna J.C., Alegret M. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep. 2016; 6: 26149. doi: 10.1038/srep26149
  23. Perry R.J., Camporez J.G., Kursawe R., Titchenell P.M., Zhang D., Perry C.J., Jurczak M.J., Abudukadier A., Han M.S., Zhang X., Ruan H., Yang X., Caprio S., Kaech S.M., Sul H.S., Birnbaum M.J., Davis R.J., Cline G.W., Petersen K.F., Shulman1 G.I. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015; 160 (4): 745–58. doi: 10.1016/j.cell.2015.01.012
  24. Иванов С.В., Островская Р.У. Сочетание высокоуглеводной диеты и стрептозотоцина для моделирования сахарного диабета 2 типа у крыс Вистар. Фармакокинетика и фармакодинамика. 2023; 2: 54–9. doi: 10.37489/2587-7836-2023-2-54-59. [Ivanov S.V., Ostrovskaya R.U. Combination of a high-carbohydrate diet and streptozotocin for modeling type 2 diabetes in Wistar rats. Pharmacokinetics and pharmacodynamics. 2023; 2: 54–9 (in Russian). doi: 10.37489/2587-7836-2023-2-54-59]
  25. Tan G.D., Olivecrona G., Vidal H., Frayn K.N., Karpe F. Insulin sensitisation affects lipoprotein lipase transport in type 2 diabetes: role of adipose tissue and skeletal muscle in response to rosiglitazone. Diabetologia. 2006; 49: 2412–8. doi: 10.1007/s00125-006-0370-9
  26. Huang Y., Li X., Wang M., Ning H., Li Y., Sun C. Lipoprotein lipase links vitamin D, insulin resistance, and type 2 diabetes: a cross-sectional epidemiological study. Cardiovasc Diabetol. 2013; 12 (1): 1–8. doi: 10.1186/1475-2840-12-17
  27. Xie C., Wang Z.C., Liu X.F., Yang M.S. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. Eur. J. Hum Genet. 2010; 18 (1): 3–7. doi: 10.1038/ejhg.2009.134

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experiment design on mice: а) line C57/BL6, б) lines ICR and CBA/lac [Kachalov K.S. et al., 2023]

Download (323KB)
3. Fig. 2. The relationship of hyperlipidemia and hyperglycemia induced by tyloxapol ([27], with am. and add.)

Download (1MB)

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies