Dacarbazine initiates sirt1-independent overexpression of anti-apoptotic bcl2 in melanoma cells in vivo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Cancer cell drug resistance in melanoma is associated with evasion of apoptosis-induced stimuli. Assessing the level of expression of the BCL2 and SIRT1 genes in distant organs and the tumor node makes it possible to assess the resistance of melanoma cells to chemotherapeutic effects associated with the activation of anti-apoptotic mechanisms.

The aim of the study. Relative expression level of the SIRT1 and BCL2 estimation in the tumor node and target organs for distant metastatic (lungs, liver) in B16 melanoma bearing mice under dacarbazine treatment.

Methods. In the in vivo model of B16 melanoma. Intraperitoneal administration of dacarbazine was used in vivo. Subsequently, total RNA was extracted from the cells of tumor node and distant organs (liver, lungs). Relative expression levels of the apoptosis and cell proliferation genes SIRT1, BCL2 were analyzed using real-time PCR (RT-PCR) method.

Results. When exposed to dacarbazine, the relative level of expression of the anti-apoptotic BCL2 in the tumor in B16 melanoma increases by 5.7-fold. The relative expression level of SIRT1 in the lungs after intraperitoneal injections of dacarbazine decreased by 3.8-fold.; in the liver of mice, the relative expression level of SIRT1 increased by 1.94-fold. The relative level of BCL2 expression in the lungs after intraperitoneal injections of dacarbazine decreased by 31-fold. In mouse liver, the relative expression level of BCL2 increased 1.94-fold.

Conclusion. When exposed to dacarbazine as a damaging factor in skin melanoma in vivo, SIRT1-mediated protection against apoptosis of liver cells and SIRT1-mediated activation of apoptosis in lung tissue cells of mice can be replaced, while in the melanoma tumor cell a pattern of SIRT1-independent induction of anti-apoptotic processes by dacarbazine in B16 melanoma bearing mice under dacarbazine treatment.

Full Text

Restricted Access

About the authors

Ekaterina Z. Lapkina

Federal State Budgetary Educational Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: e.z.lapkina@mail.ru
ORCID iD: 0000-0002-7226-9565

Associate Professor of the Department of Pharmacy. Candidate of biological sciences.

Russian Federation, P. Zeleznyak street, 1, Krasnoyarsk, 660022

Victoria A. Kutsenko

Email: vika.kucenko@mail.ru
ORCID iD: 0009-0006-4129-9258

PhD student of the Department of Pathophysiology

Russian Federation

Tatiana G. Ruksha

Federal State Budgetary Educational Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: tatyana_ruksha@mail.ru
ORCID iD: 0000-0001-8142-4283

Head of the Department of Pathophysiology. Doctor of medical sciences, Professor.

Russian Federation, P. Zeleznyak street, 1, Krasnoyarsk, 660022

References

  1. Long G., Swetter S., Menzies A., Gershenwald J., Scolyer R. Cutaneous melanoma. Lancet. 2023; 402 (10400): 485–502. doi: 10.1016/S0140-6736(23)00821-8.
  2. Артюхов И.П., Гаврилюк Д.В., Дыхно Ю.А., Рукша Т.Г. Заболеваемость меланомой кожи взрослого населения Красноярского края. Сибирское медицинское обозрение. 2013; 6 (84): 37–42. [Artyukhov I.P., Gavrilyuk D.V., Dyhno Yu.A., Ruksha T.G. Zabolevaemost' melanomoj kozhi vzroslogo naseleniya Krasnoyarskogo kraya. Sibirskoe medicinskoe obozrenie. 2013; 6 (84): 37–42 (In Russian)].
  3. Al-Qatati A., Aliwaini S. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol Lett. 2017; 14 (6): 7993–9. doi: 10.3892/ol.2017.7189.
  4. Chapman P., Hauschild A., Robert C., Haanen J., Ascierto P., Larkin J., Dummer R., Garbe C., Testori A., Maio M., Hogg D., Lorigan P., Lebbe C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011; 364 (26): 2507–16. doi: 10.1056/NEJMoa1103782.
  5. Lui P., Cashin R., Machado M., Hemels M., Corey-Lisle P., Einarson T. Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treat Rev. 2007; 33 (8): 665–80. doi: 10.1016/j.ctrv.2007.06.004.
  6. Poust J. Targeting metastatic melanoma. Am. J. Health Syst Pharm. 2008; 65 (24 Suppl 9): 9–15. doi: 10.2146/ajhp080461.
  7. Cory S., Adams J. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002; 2: 647–56. doi: 10.1038/nrc883.
  8. Chipuk J.E., Green, D.R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends in cell biology. 2008; 18 (4): 157–64. doi: 10.1016/j.tcb.2008.01.007.
  9. Chonghaile T.N., Sarosiek K.A., Vo T.T., Ryan J.A., Tammareddi A., Moore V.D.G., Letai A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011; 334 (6059): 1129–33. doi: 10.1126/science.1206727.
  10. Vogler M. Targeting BCL2-Proteins for the Treatment of Solid Tumours. Adv Med. 2014: 943648. doi: 10.1155/2014/943648.
  11. Bosch-Presegue L., Vaquero A. Sirtuins in stress response: guardians of the genome. Oncogene. 2014; 33 (29): 3764–75. doi: 10.1038/onc. 2013.344.
  12. Alves-Fernandes D.K., Jasiulionis M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019; 20 (13): 3153. doi: 10.3390/ijms20133153.
  13. Kunimoto R., Jimbow K., Tanimura A., Sato M., Horimoto K., Hayashi T., Hisahara S., Sugino T., Hirobe T., Yamashita T., Horio Y. SIRT1 regulates lamellipodium extension and migration of melanoma cells. J. Invest Dermatol. 2014; 134 (6): 1693–700. doi: 10.1038/jid.2014.50.
  14. Sun T., Jiao L., Wang Y. SIRT1 induces epithelial-mesenchymal transition by promoting autophagic degradation of E-cadherin in melanoma cells. Cell Death Dis. 2018: 136 (9). doi: 10.1038/s41419-017-0167-4.
  15. Potente M., Ghaeni L., Baldessari D., Mostoslavsky R., Rossig L., Dequiedt F., Haendeler J., Mione M., Dejana E., Alt F.W., Zeiher A.M., Dimmeler S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007; 21 (20): 2644–58. doi: 10.1101/gad.435107.
  16. Gonfloni S., Iannizzotto V., Maiani E., Bellusci G., Ciccone S., Diederich M. P53 and Sirt1: routes of metabolism and genome stability. Biochem Pharmacol. 2014; 92 (1): 149–56. doi: 10.1016/j.bcp.2014.08.034.
  17. Botta G., De Santis L.P., Saladino R. Current advances in the synthesis and antitumoral activity of SIRT1-2 inhibitors by modulation of p53 and pro-apoptotic proteins. Curr Med Chem. 2012; 19 (34): 5871–84. doi: 10.2174/092986712804143303.
  18. International Guiding Principles for Biomedical Research Involving Animals issued by CIOMS. Vet Q. 1986; 8 (4): 350–2. doi: 10.1080/01652176.1986.9694068
  19. Aksenenko M.B., Shestakova L.A., Ruksha T.G. Features of metastasis transplanted B16 melanoma after inhibition MMP-9. Siberian J. of Oncology. 2012; 1 (49): 31–5.
  20. De Luca T., Pelosi A., Trisciuoglio D., D'Aguanno S., Desideri M., Farini V., Di Martile M., Bellei B., Tupone M.G., Candiloro A., Regazzo G., Rizzo M.G., Del Bufalo D. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog. 2016; 55 (12): 2304–12. doi: 10.1002/mc.22437.
  21. Wang X.D., Hu K.Q., Liu C., McBurney M. Ablation of Sirtuin 1 Deacetylase Activity Induces Pulmonary Emphysema by Inducing Cellular Senescence and Disrupting Circadian Clock in Mice (P01-022-19). Curr Dev Nutr. 2019; 3 (1): 1–22. doi: 10.1093/cdn/nzz028.P01-022-19.
  22. Chen H.C., Jeng Y.M., Yuan R.H., Hsu H.C., Chen Y.L. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 2012; 19 (6): 2011–9. doi: 10.1245/s10434-011-2159-4.
  23. Wilking-Busch M.J., Ndiaye M.A., Liu X., Ahmad N. RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J. Proteomics. 2018; 170: 99–109. doi: 10.1016/j.jprot.2017.09.002.
  24. Liu N., Yang H., Yang L. Dual roles of SIRT1 in the BAX switch through the P53 module: A mathematical modeling study. Comput Struct Biotechnol J. 2021; 19: 5578–88. doi: 10.1016/j.csbj.2021.09.033.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relationship between SIRT1 and p53. P53 binds to the SIRT1 promoter and represses SIRT1 transcription. Through this mechanism, p53 provides a feedback mechanism to regulate SIRT1 expression and at the same time modulate the p53-dependent transcriptional response. Nutrient deficiency activates SIRT1. The activity of poly(ADP-ribose) polymerase 1 (PARP1) leads to NAD+ depletion, limiting the activity of SIRT1 (according to Gonfloni, 2014 [16])

Download (524KB)
3. Fig. 2. Relative expression levels of SIRT1(A), BCL2 (B) in the tumor node (1), in the lungs (2), in the liver (3). Shown are the means (center of bars), their error (size of bars), and standard deviations (vertical bars)

Download (759KB)
4. Fig. 3. Mathematical model of the dynamics of SIRT1-mediated activation of BAX and BCL2. Promotion is represented by arrowed lines, inhibition is indicated by dashed lines, and apoptotic signaling is indicated by circled lines (according to Liu N, 2021 [24])

Download (123KB)

Copyright (c) 2024 Russkiy Vrach Publishing House