Pathogenetic aspects of steroid-resistant severe bronchial asthma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Purpose of the review. The purpose of this review was to summarize the available relevant data on pathogenetic mechanisms in the formation of steroid resistance in severe bronchial asthma.

Material and methods. The analysis of domestic sources on the CyberLeninka and e-Library scientific electronic libraries, and the search for published foreign full-text articles, reviews, systematic reviews, meta-analysis data and randomized clinical trials in PubMed/Medline were conducted to summarize relevant material on the pathophysiology of steroid-resistant asthma. In addition, a reverse search was conducted for links to relevant studies. Publications from 2020 to 2024 were considered for consideration. The analysis included full-fledged articles and the results of clinical trials containing information on key cytokines of neutrophilic asthma: IL-33, IL-17, TNF, IFNγ. A search for the term “steroid-resistant asthma” for the specified period (2020–2024) initially revealed a list of 93 articles. 62 articles presented in the form of abstracts or not corresponding to the target topic were excluded from the general list. A total of 31 publications from an electronic search in the PubMed database and 17 articles additionally found using a manual search were included in the analysis.

Results. Bronchial asthma (BA) is an extremely heterogeneous respiratory disease characterized by airway obstruction, bronchial hyperreactivity, and airway inflammation. About 3-10% of asthma patients suffer from uncontrolled severe asthma. The main difference between patients with severe form of the disease and patients with mild and moderate asthma is resistance to basic therapy drugs – glucocorticosteroids. Severe bronchial asthma is heterogeneous and includes different immunophenotypes: Th2-high (eosinophilic inflammation), Th2-low and Th17-high (non-eosinophilic inflammation accompanied by neutrophilic inflammation of the respiratory tract), mixed Th1/Th17-mediated inflammation.

Conclusion. The paper provides information for determining common points of interaction between different immune mediators and related mechanisms related to respiratory tract inflammation and the immunobiology of steroid-resistant asthma.

Full Text

Restricted Access

About the authors

Ella V. Churyukina

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Kuban State Medical University” of Public Health Care of Russia

Author for correspondence.
Email: echuryukina@mail.ru
ORCID iD: 0000-0001-6407-6117

Candidate of Medical Sciences, Associate Professor. Head of the Department of Allergic and Autoimmune Diseases of the Research Institute of Obstetrics and Pediatrics, Associate Professor of the Department of Clinical Immunology, Allergology and Laboratory Diagnostics of the Faculty of Advanced Training and Professional Retraining of Specialists

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022; M. Sedina str., 4, Krasnodar, 350063

Olga P. Ukhanova

Federal State Budgetary Educational Institution of Higher Education “Stavropol State Medical
University” of the Ministry of Health of the Russian Federation; Federal North Caucasus Federal Scientific and Clinical Center FMBA of Russia

Email: uhanova_1976@mail.ru
ORCID iD: 0000-0002-7247-0621

Doctor of Medical Sciences, Professor, Department of Clinical Immunology with the Course of Additional Professional Education, Head of the North Caucasian Center of Allergy, Immunology, and Genetically Engineered Therapies

Russian Federation, Mira str., 310, Stavropol, 355017; Sovetskaya str., 24, Yessentuki, 357600

Inga M. Kotieva

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: kukulik70@mail.ru
ORCID iD: 0000-0002-2796-9466

Doctor of Medical Sciences, Professor. Vice-Rector for Scientific Work, head of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Marina V. Gulyan

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: 25marinablik@mail.ru
ORCID iD: 0000-0001-6023-8916

Candidate of Medical Sciences, Associate Professor. Head of the Department of Scientific Policy and Organization of Scientific Research

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Margarita S. Alkhusein-Kulyaginova

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: alhusein-kulyaginova@yandex.ru
ORCID iD: 0000-0001-5123-5289

Assistant of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Tatiana A. Iordanidi

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: tata.volkova@list.ru
ORCID iD: 0009-0007-9050-3582

laboratory assistant of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Syahlya S. Ivanova

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: vzng@bk.ru
ORCID iD: 0009-0000-0603-9350

laboratory assistant of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Daria I. De

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: dashuta.de@mail.ru
ORCID iD: 0009-0008-9828-3198

laboratory assistant of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Margarita A. Dodokhova

Federal State Budgetary Educational Institution of Higher Education «Rostov State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: dodohova@mail.ru
ORCID iD: 0000-0003-3104-827X

Doctor of Medical Sciences, Associate Professor. head of the Central Research Laboratory, professor of the Department of Pathological Physiology

Russian Federation, Nakhichevansky Lane, 29, Rostov-on-Don, 344022

Elena V. Koreeva

State Autonomous Institution of the Rostov region “Regional Consultative and Diagnostic Center”

Email: el.koreeva@yandex.ru
ORCID iD: 0000-0002-8808-9067

Allergologist-Immunologist

Russian Federation, Pushkinskaya St., 127, Rostov-on-Don, 344000

References

  1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2023. Updated July 2023. Available at: www.ginasthma.org
  2. Nunes C., Pereira A.M., Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017; 3 (1). https://doi.org/10.1186/s40733-016-0029-3
  3. Ненашева Н.М. Бронхиальная астма. Современный взгляд на проблему. М.: ГЭОТАР-Медиа, 2018; 304. [Nenasheva N.M. Bronchial asthma. A modern view of the problem. M.: GEOTAR-Media, 2018; 304 (in Russian)]
  4. Senna G., Latorre M., Bugiani M., Caminati M., Heffler E., Morrone D., Paoletti G., Parronchi P., Puggioni F., Blasi F., Canonica G.W., Paggiaro P. Sex differences in severe asthma: results from severe asthma network in Italy-SANI. Allergy Asthma Immunol Res. 2021; 13: 219–28. https://doi.org/10.4168/aair.2021.13.2.219
  5. Nabe T. Steroid-resistant asthma and neutrophils. Biol Pharm Bull. 2020; 43: 31–5. https://doi.org/10.1248/bpb.b19-00095
  6. Busse W.W., Kraft M., Rabe K.F., Deniz Y., Rowe P., Ruddy M., Castro M. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur Respir J. 2021; 58: 2003393. https://doi.org/10.1183/13993003.03393-2020
  7. Azim A., Green B., Lau L., Rupani H., Jayasekera N., Bruce K., Howarth P. Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma. Allergy. 2021; 76: 2070–8. https://doi.org/10.1111/all.14732
  8. Lee Y., Quoc Q.L., Park H-S. Biomarkers for severe asthma: lessons from longitudinal cohort studies. Allergy Asthma Immunol Res. 2021; 13: 375–89. https://doi.org/10.4168/aair.2021.13.3.375
  9. Saglani S., Lui S., Ullmann N., Campbell G.A., Sherburn R.T., Mathie S.A., Denney L., Bossley C.J., Oates T., Walker S.A., Bush A., Lloyd C.M. IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma. J. Allergy Clin Immunol. 2013; 132: 676–85. https://doi.org/10.1016/j.jaci.2013.04.01223–25
  10. Hirahara K., Mato N., Hagiwara K., Nakayama T. The pathogenicity of IL-33 on steroid-resistant eosinophilic inflammation via the activation of memory-type ST2+CD4+ T cells. J. Leukoc Biol. 2018; 104: 895–901. https://doi.org/10.1002/JLB.MR1117-456R
  11. Kim S.-H., Jung H.-W., Kim M., Moon J.-Y., Ban G.-Y., Kim S.J., Yoo H.J., Park H.S. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy. 2020; 75: 1991–2004. https://doi.org/10.1111/all.14236
  12. Rossios C., Pavlidis S., Hoda U., Kuo C.-H., Wiegman C., Russell K., Sun K., Loza M.J., Baribaud F. Et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin Immunol. 2018; 141: 560–70. https://doi.org/10.1016/j.jaci.2017.02.045
  13. Lachowicz-Scroggins M.E., Dunican E.M., Charbit A.R., Raymond W., Looney M.R., Peters M.C., Gordon E.D., Woodruff P.G., Lefrançais E. еt al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am. J. Respir Crit Care Med. 2019; 199: 1076–85. https://doi.org/10.1164/rccm.201810-1869OC
  14. Chen X., Li Y., Qin L., He R., Hu C. Neutrophil extracellular trapping network promotes the pathogenesis of neutrophil-associated asthma through macrophages. Immunol Invest. 2020; 50: 544–61. https://doi.org/10.1080/08820139.2020.1778720
  15. Krishnamoorthy N., Douda D.N., Brüggemann T.R., Ricklefs I., Duvall M.G., Abdulnour R.E., Martinod K., Tavares L., Wang X. еt al. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol. 2018; 3: eaao4747. https://doi.org/10.1126/sciimmunol.aao4747
  16. Barbaro M.P.F., Spanevello A., Palladino G.P., Salerno F.G., Lacedonia D., Carpagnano G.E. Exhaled matrix metalloproteinase-9 (MMP9) in different biological phenotypes of asthma. Eur. J. Intern Med. 2014; 25: 92–6. https://doi.org/10.1016/j.ejim.2013.08.705
  17. Naik S.P. PAM, BSJ, Madhunapantula S.V., Jahromi S.R., Yadav M.K. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP9) in asthma. J. Asthma. 2017; 54: 584–93. https://doi.org/10.1080/02770903.2016.1244828.
  18. Takahashi K., Pavlidis S., Ng Kee Kwong F., Hoda U., Rossios C., Sun K., Loza M., Baribaud F., Chanez P. et al. Оn behalf of the U-BIOPRED study group. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J. 2018; 51: 1702173. https://doi.org/10.1183/13993003.02173-2017
  19. Grzela K., Zagórska W., Krejner A., Banaszkiewicz A., Litwiniuk M., Kulus M., Grzela T. Inhaled corticosteroids do not reduce initial high activity of matrix metalloproteinase (MMP)-9 in exhaled breath condensates of children with asthma exacerbation: a proof of concept study. Cent Eur. J. Immunol. 2016; 41: 221–7. https://doi.org/10.5114/ceji.2016.60998
  20. Ko F.W.S., Diba C., Roth M., McKay K., Johnson P.R.A., Salome C., King G.G. A comparison of airway and serum matrix metalloproteinase-9 activity among normal subjects, asthmatic patients, and patients with asthmatic mucus hypersecretion. Chest. 2005; 127: 1919–27. https://doi.org/10.1378/chest.127.6.1919
  21. Piyadasa H., Hemshekhar M., Osawa N., Lloyd D., Altieri A., Basu S., Mookherjee N. Disrupting Tryptophan in the Central Hydrophobic Region Selectively Mitigates Immunomodulatory Activities of the Innate Defence Regulator Peptide IDR-1002. J. of Medicinal Chemistry. 2021; 64 (10): 6696–705. https://doi.org/10.1021/acs.jmedchem.0c02065
  22. Alam R., Good J., Rollins D., Verma M., Chu H., Pham T.-H., Martin R.J. Airway and serum biochemical correlates of refractory neutrophilic asthma. J. of Allergy and Clinical Immunology. 2017; 140: 1004–14.e13. https://doi.org/10.1016/j.jaci.2016.12.963
  23. Steinke J.W., Lawrence M.G., Teague W.G., Braciale T.J., Patrie J.T., Borish L. Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. J. Allergy Clini Immunol. 2021; 147: 686–93. https://doi.org/10.1016/j.jaci.2020.05.039
  24. Lambrecht B.N., Hammad H., Fahy J.V. The cytokines of asthma. Immunity. 2019; 50: 975–91. https://doi.org/10.1016/j.immuni.2019.03.018
  25. Cayrol C., Duval A., Schmitt P., Roga S., Camus M., Stella A., Burlet-Schiltz O., Gonzalez-de-Peredo A., Girard J.P. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol. 2018; 19: 375–85. https://doi.org/10.1038/s41590-018-0067-5
  26. Piyadasa H., Lloyd D., Lee A.H.Y., Altieri A., Hemshekhar M., Osawa N., Basu S., Blimkie T., Falsafi R., Halayko A.J., Hancock R.E.W., Mookherjee N. Characterization of immune responses and the lung transcriptome in a murine model of IL-33 challenge. Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165950. https://doi.org/10.1016/j.bbadis.2020.165950
  27. Poon A.H., Eidelman D.H., Martin J.G., Laprise C., Hamid Q. Pathogenesis of severe asthma. Clini Exp Allergy. 2012; 42: 625–37. https://doi.org/10.1111/j.1365-2222.2012.03983.x
  28. Kurokawa A., Kondo M., Arimura K., Ashino S., Tagaya E. Less airway inflammation and goblet cell metaplasia in an IL-33-induced asthma model of leptin-deficient obese mice. Respir Res. 2021; 22: 166. https://doi.org/10.1186/s12931-021-01763-3
  29. Cho K.-A., Suh J.W., Sohn J.H., Park J.W., Lee H., Kang J.L., Woo S.Y., Cho Y.J. IL-33 induces Th17-mediated airway inflammation via mast cells in ovalbuminchallenged mice. Am. J. Physiol Lung Cell Mol Physiol. 2011; 302: 429–40. https://doi.org/10.1152/ajplung.00252.2011
  30. Li Y., Wang W., Lv Z., Li Y., Chen Y., Huang K., Corrigan C.J., Ying S. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J. Immunol. 2018; 200: 2253–62. https://doi.org/10.4049/jimmunol.1701455
  31. Ramakrishnan R.K., Heialy S.A., Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med. 2019; 13: 1057–68. https://doi.org/10.1080/17476348.2019.1666002
  32. Zhang Z., Biagini Myers J.M., Brandt E.B., Ryan P.H., Lindsey M., Mintz-Cole R.A., Reponen T., Vesper S.J., Forde F. et al. β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses. J. Allergy Clin Immunol. 2017; 139: 54–65. https://doi.org/10.1016/j.jaci.2016.02.031
  33. Gurczynski S.J., Moore B.B. IL-17 in the lung: the good, the bad, and the ugly. Am. J. Physiol Lung Cell. Mol. Physiol. 2018; 314: 6–16. https://doi.org/10.1152/ajplung.00344.2017
  34. Kim H.Y., Umetsu D.T., Dekruyff R.H. Innate lymphoid cells in asthma: Will they take your breath away? Eur. J. Immunol. 2016; 46: 795–806. https://doi.org/10.1002/eji.201444557
  35. Seys S.F., Lokwani R., Simpson J.L., Bullens D.M.A. New insights in neutrophilic asthma. Curr Opin Pulm Med. 2019; 25: 113–20. https://doi.org/10.1097/MCP.0000000000000543
  36. Чурюкина Э.В., Сизякина Л.П. Патогенетические аспекты формирования различных вариантов бронхиальной астмы. Российский аллергологический журнал. 2017; 1: 194–6. [Churyukina E.V., Sizyakina L.P. Pathogenetic aspects of the formation of various variants of bronchial asthma. Russian Allergological J. 2017; 1: 194–6 (in Russian)]
  37. Honda K., Wada H., Nakamura M., Nakamoto K., Inui T., Sada M., Koide T., Takata S., Yokoyama T. et al. IL-17A synergistically stimulates TNF-α-induced IL-8 production in human airway epithelial cells: A potential role in amplifying airway inflammation. Exp Lung Res. 2016; 42: 205–16. https://doi.org/10.1080/01902148.2016.1190796
  38. Niessen N.M., Gibson P.G., Baines K.J., Barker D., Yang I.A., Upham J.W., Reynolds P.N., Hodge S., James A.L. et al. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy. 2021; 76: 2090–101. https://doi.org/10.1111/all.14768
  39. Gibson P.G., Yang I.A., Upham J.W., Reynolds P.N., Hodge S., James A.L., Jenkins C., Peters M.J., Marks G.B., Baraket M., Powell H., Simpson J.L. Efficacy of azithromycin in severe asthma from the AMAZES randomised trial. ERJ Open Res. 2019; 5: 00056–2019. https://doi.org/10.1183/23120541.00056-2019.
  40. Britt R.D., Thompson M.A., Sasse S., Pabelick C.M., Gerber A.N., Prakash Y.S. Th1 cytokines TNF-α and IFN-γ promote corticosteroid resistance in developing human airway smooth muscle. Am. J. Physiol Lung Cell Mol Physiol. 2018; 316: 71–81. https://doi.org/10.1152/ajplung.00547.2017
  41. Raundhal M., Morse C., Khare A., Oriss T.B., Milosevic J., Trudeau J., Huff R., Pilewski J., Holguin F. et al. High IFN-gamma and low SLPI mark severe asthma in mice and humans. J. Clin Invest. 2015; 125: 3037–50. https://doi.org/10.1172/JCI80911
  42. Piyadasa H., Hemshekhar M., Altieri A., Basu S., van der Does A.M., Halayko A.J., Hiemstra P.S., Mookherjee N. Immunomodulatory innate defence regulator (IDR) peptide alleviates airway inflammation and hyper-responsiveness. Thorax. 2018; 73: 908–17. https://doi.org/10.1136/thoraxjnl-2017-210739
  43. Galeone C., Scelfo C., Bertolini F., Caminati M., Ruggiero P., Facciolongo N., Menzella F. Precision medicine in targeted therapies for severe asthma: is there any place for “omics” technology? Biomed Res Int. 2018; 2018: 4617565. https://doi.org/10.1155/2018/4617565
  44. Oakley R.H., Sar M., Cidlowski J.A. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J. Biol. Chem. 1996; 271: 9550–9. https://doi.org/10.1074/jbc.271.16.9550
  45. Webster J.C., Oakley R.H., Jewell C.M., Cidlowski J.A. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: A mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA. 2001; 98: 6865–70. https://doi.org/10.1073/pnas.121455098
  46. Desmet S.J., De Bosscher K. Glucocorticoid receptors: finding the middle ground. J. Clin. Invest. 2017; 127: 1136–45. https://doi.org/10.1172/JCI88886
  47. Wang M., Gao P., Wu X., Chen Y., Feng Y., Yang Q., Xu Y., Zhao J., Xie J. Impaired anti-inflammatory action of glucocorticoid in neutrophil from patients with steroid-resistant asthma. Respir Res. 2016; 17: 153. https://doi.org/10.1186/s12931-016-0462-0
  48. Prabhala P., Bunge K. Rahman MdM, Ge Q, Clark AR, Ammit AJ. Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1. Am. J. Physiol Lung Cell Mol Physiol. 2015; 308: 973–80. https://doi.org/10.1152/ajplung.00219.2014
  49. Mei D., Tan W.S.D., Wong W.S.F. Pharmacological strategies to regain steroid sensitivity in severe asthma and COPD. Curr Opin Pharmacol. 2019; 46: 73–81. https://doi.org/10.1016/j.coph.2019.04.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House