Changes in the quantitative composition of neuroglia in the prefrontal cortex of rats with modeled post-traumatic stress disorder


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Neuroglia plays an important role in maintaining the stable functioning of the CNS. Of particular importance are neuroglial cells in the organization of the immune system of the brain, activating both with physical, physiological damage, and with chronic stress or other extreme, including mental, effects. The aim of the study. Characterizing the state of neuroglia in the prefrontal cortex of rats with a simulated post-traumatic stress disorder is crucial for understanding the cellular mechanisms underlying the development of pathological behavioral disorders in PTSD. Methods. Animal model of PTSD. Immunohistochemistry. Results. Significant quantitative differences in astrocytes were detected in all three zones of the medial prefrontal cortex in experimental and control animals, namely: a decrease in the number of astrocytic cells and their density in the first group (p<0,05). Conclusion. In the animal model of PTSD, the decrease in the density of astrocytes in the medial prefrontal cortex of the rat brain, despite the heterogeneity in the quantitative changes in the astrocytic network of individual zones of brain, is a general phenomenon not specific to a specific zone.

Keywords

Full Text

Restricted Access

About the authors

G. M Khayrullina

Immanuel Kant Baltic Federal University

Email: guzzi@inbox.ru
A. Nevskogo str., 14, Kaliningrad, 236016, Russian Federation

I. A Vacoliuk

Immanuel Kant Baltic Federal University

Email: guzzi@inbox.ru
A. Nevskogo str., 14, Kaliningrad, 236016, Russian Federation

References

  1. Raivich G., Bohatschek M., Kloss C.UA, Werner A., Jones L.L., Kreutzberg G.W Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain res rev. 1999; 30 (1): 77-105.
  2. Малиновская Н.А., Прокопенко С.В., Комлева Ю.К., Панина Ю.А. Молекулы-маркеры активации глии при нейровоспалении: новые возможности фармакотерапии и нейродегенерации. Сибирское медицинское обозрение. 2014; 5: 5-15.
  3. Малиновская Н.А., Фролова О.В., Панина Ю.А., Гасымлы Э.Д., Писарева Н.В., Прокопенко С.В., Салмина А.Б. Про- и антивоспалительный фенотип клеток микроглии и астроглии при нейродегенерации. Цитокины и воспаление. 2017; 1: 20-6
  4. Черных Е.Р., Шевела Е.Я., Останин А.А. Роль макрофагов в восстановлении повреждений центральной нервной системы: новые возможности в лечении неврологических расстройств. Медицинская иммунология. 2017; 1: 7-18
  5. Pascual O., Achour S., Rostaing P., Triller A., Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109 (4): 197-205 https://doi.org/ 10.1073/ pnas.1111098109
  6. Reus G.Z., Fries G.R., Stertz L., Badawy M., Passos I.C., Barichello T., Kapczinski F., Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015; 300: 141-54 https://doi.org/ 10.1016/j. neuroscience.2015.05.018
  7. Монастырская Е.А., Лямина С.В., Малышев И.Ю. М1 иМ2 фенотипы активированных макрофагов и их роль в иммунном ответе и патологии. Патогенез. 2008; 4: 31-9.
  8. Tang Y, Le W Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology 2016;(2): 1181-94 https://doi.org/ 10.1007/ s12035-014-9070-5
  9. Murphy-Royal C., Gordon G.R., Bains J.S. Stress-induced structural and functional modifications of astrocytes.Further implicating glia in the central response to stress. Glia. 2019; 19 https://doi.org/ 10.1002/ glia.23610
  10. Sriram K.O., O'Callaghan J.P Divergent roles for tumor necrosis factor-alpha in the brain. J. Neuroimmune Pharmacology 2007; 2 (2): 140-53 https://doi.org/10.1007/ s11481-007-9070-6
  11. Katzman A., Alberini C.M. NLGN1 and NLGN2 in the prefrontal cortex their role in memory consolidation and strengthening. Current opinion neurobiology 2018; 48: 122-30 https://doi.org/10.10Wj. conb.2017.12.003
  12. Wohleb E.S. Neuron-Microglia interactions in mental health disorders. Frontiers in immunology 2016; 7: 544 https://doi. org/10.3389/fimmu.2016.00544
  13. Grunfeld I.S., Likhtik E. Mixed selectivity encoding and action selection in the prefrontal cortex during threat assessment. Current opinion in neurobiology. 2018; 49: 108-15 https://doi.org/10.1016/]. conb.2018.01.008
  14. Puig M.V, Gulledge A.T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Molecular Neurobiology 2011; 44 (3): 449-64 https://doi.org/ 10.1007/ s12035-011-8214-0
  15. Xu N., Tang X.N., Pan W, Xie Z.M., Zhang G.F., Ji M.H., Yang J.J., Zhou M.T., Zhou Z.Q. Spared Nerve Injury Increases the Expression of Microglia M1 Markers in the Prefron tal Cortex of Rats and Provokes DepressionLike Behaviors. Frontiers in neuroscience. 2017; 11: 209 https://doi.org/ 10.3389/ fnins.2017.00209
  16. Christoffel D.J., Golden S.A., Russo S.J. Structural and synaptic plasticity in stress-related disorders. Reviews in the neurosciences. 2011; 22 (5): 535-49. https://doi. org/10.1515/RNS.2011.044
  17. Kim Y K., Amidfar M., Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in PTSD. Progress in Neuro-psychopharmacology and biological Psychiatry. 2018; 91: 103-12 https://doi.org/10.10Wj. pnpbp.2018.06.008
  18. Henneberger C., Bard L., Panatier A., Reynolds J. P, Medvedev N. I. Minge D., Herde M.K. , Anders S., Kraev I., Zheng K., Jensen T., Sanchez-Romero I., Janovjak H., Ottersen O-P, Nagelhus E-A, Oliet S., Stewart M., Nagerl U.V, Rusakov D.A. Astroglia withdraw from potentiated synapses boosting inter-synaptic cross-talk. bioRxiv. 2018 https://doi.org/10.1101/349233
  19. Deslauriers J., Toth M., Der-Avakian A., Risbrough V.B. Current status of animal models of PTSD: behavioural phenotypes and future challenges in improving translation. Biological psychiatry 2018; 83 (10): 895-907 https://doi.org/10.10Wj. biopsych.2017.11.019
  20. Kim S, Hwang Y, Webster MJ, Lee D. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Molecularpsychiatry 2016; 21 (3): 376-85 https://doi.org/10.1038/ mp.2015.79

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies