The possibilities of anomalous viscosity time dependence method for determination of cell radiosensitivity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The initial state of an organism and its initial reactivity are the main prognostic criteria for the individual radiosensitivity evaluation. Particulars of the DNA structure and chromatin conformation determine in many respects the cell radiosensitivity. The method of the anomalous viscosity time dependence (AVTD) allows to research the chromatin conformational state, as well as to evaluate its reactivity based on the response to hyperthermia (heat shock). The DNA damage degree after irradiation under the test dose is a general criterion for the cell radiosensitivity evaluation. The goal of research. The work is aimed to analyse the radiation-induced DNA damage dependence on the initial chromatin conformational state and reactivity. Material and methods. The radiobiological studies were performed using the cells of white outbred male rats in vitro. Using the AVTD method, with respect to each animal, it was determined the initial chromatin conformational state and reactivity. After gamma radiation exposure of 60Со at the dose of 3,0 Gy it was determined the DNA damage degree using DNA-comet assay. Results. In a group of animals in general, the irradiation led to a considerable increase of the DNA damage degree relative to the spontaneous level (р0,001). It was found the meaningful positive correlative dependence (r=0,37; p0,05) of the individual radiationinduced DNA damage degree on the initial chromatin reactivity to heat shock.

全文:

受限制的访问

作者简介

K. Ivanov

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

G. Patochka

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

I. Varganova

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

Ya. Medvedev

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

V. Nagiba

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

E. Nikanorova

Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics

Email: gane@orb2.vniief.ru
Mira pr., 37, Sarov, 607188, Russian Federation

参考

  1. Даренская Н.Г, Короткевич А.О. Неспецифическая реактивность организма и принципы формирования индивидуальной резистентности. М.: Воентехниздат, 2001; 236
  2. Ушаков И.Б., Штемберг А.С., Шафиркин А.В. Реактивность и резистентность организма млекопитающих. М.: Наука, 2007; 493
  3. Штемберг А.С., Ушаков И.Б., Штемберг О.И. Инновационный проект «Проблема оценки и прогнозирования индивидуальной неспецифической резистентности организма». Микроэлекроника. 2008; 3: 72-4
  4. Алипов Е.Д., Тырсина Е.Г., Саримов P. М., Рузов А.С., Прохорчук Е.Б. Приобретенная радиорезистентность потомков облученных клеток сопровождается перестройками в организации хроматина. Рад. биол. Радиоэкология. 2004; 44(2): 188-97
  5. Хаймович Т.И., Иванов К.Ю., Паточка Г.А., Лобкаева Е.П. Конформационное состояние хроматина и его реактивность на тепловой шок как показатели неспецифической реакции клетки на внешние воздействия. Экологический вестник. 2010; 3 (13): 69-78
  6. Иванов К.Ю., Паточка Г.А., Никанорова Е.А., Нагиба В.И. Индивидуальные особенности изменения конформации хроматина при действии различных физических факторов. Молекулярная медицина. 2019; 17 (5): 35-41. https://doi. org/10.29296/24999490-2019-05-05
  7. Попова, Г.М., Дружинин Ю.О., Степанов В.Н., Дятчина И.Ф., Снигирева Г.П., Богомазова А.Н., Новикова Е.И., Новицкая Н.Н. Программно-аппаратный комплекс оценки индивидуальной радиочувствительности онкологических больных по методу «комет». Альманах клинической медицины. 2008; 17 (1): 368-70
  8. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310 (20): 2191-4. https://doi. org/10.1001/jama.2013.281053.
  9. Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purpose. Official J. 2010; 276: 33-79.
  10. Новикова И.А., Ходулева С.А. Клиническая и лабораторная диагностика. Минск: Выш. шк., 2013; 446.
  11. Singh N.P, McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantification of low levels of DNA damage in individual cell. Exp. Cell Res. 1998; 175 (1): 184-91.
  12. Hoffman J.I.E. Biostatistics for Medical and Biomedical Practitioners. Kirjastaja: Elsevier Science Publishing Co Inc. 2019; 734.
  13. Suzuki K., Nakashima M., Yamashita S. Dynamics of ionizing radiation-induced DNA damage response in reconstituted three-dimensional human skin tissue. Radiat. Res. 2010; 174 (4): 415-23. https://doi. org/10.1667/RR2007.1
  14. Mariotti L.G., Pirovano G., Savage K.I., Ghita M., Ottolenghi A., Prise K.M., Schettino G. Use of the y-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures. PLoS One. 2013; 8 (II) : e79541. https://doi.org/10.1371/jour-nal.pone.0079541

补充文件

附件文件
动作
1. JATS XML
##common.cookie##