Molecular genetic characteristics of non-small cell lung cancer using multi-target single-base elongation and fragment analysis


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background. Lung cancer is the most frequent cause of cancer mortality. The prevailing type is non-small cell lung cancer (NSCLC), in the treatment of which EGFR tyrosine kinase inhibitors are actively used, as well as a combination of BRAF and MEK inhibitors. The indication for the targeted therapy is the genotyping of tumor samples for the detection of predictive markers, such as mutations in the EGFR, KRAS, BRAF and HER2 genes. One approach to the rapid and complex identification of aberrations in the genes of interest is the use of methods with high sensitivity: multi-target single-base elongation (MSE) and fragment analysis (FA). Objective. Determination of clinicopathological characteristics of patients with NSCLC with the presence of driver mutations in the EGFR, KRAS, BRAF and HER2 genes. Materials and methods. A cryobank of biological specimens taken from patients with NSCLC was organized at Pavlov First Saint Petersburg State Medical University. For genotyping of the central sites of tumor samples from 60 patients with NSCLC were used multi-target single-base elongation and fragment analysis. Results. EGFR mutations were found exclusively in patients with lung adenocarcinoma (p=0,0008) with a frequency of 31%. These aberrations are significantly associated with female gender (p=0,0002) and the absence of smoking status (p=0,0007). The ratio of exon 19 deletion to L858R was 2,5:1. The prevalence of minor mutations in EGFR-positive patients was 22,2%. Thus, the coexistence of minor mutations G719S and S768I was revealed in one tumor sample. The cause of acquired resistance to the first-generation EGFR TKI in a patient with exon 19 deletion was determined - T790M in the EGFR gene. KRAS mutations were found in 10% of male patients with NSCLC who was a current or former smoker. V600E in the BRAF gene and insertions in the HER2 gene were not detected. Conclusion. An integrated methodological approach allows to accurately determine clinically significant aberrations in the EGFR, KRAS, BRAF and HER2 genes in NSCLC patients according to the recommendations.

全文:

受限制的访问

作者简介

A. Musaelyan

Pavlov First Saint-Petersburg State Medical University

Email: a.musaelyan8@gmail.com

V. Nazarov

Pavlov First Saint-Petersburg State Medical University

S. Lapin

Pavlov First Saint-Petersburg State Medical University

I. Chistyakov

Pavlov First Saint-Petersburg State Medical University

I. Komarov

Pavlov First Saint-Petersburg State Medical University

O. Tkachenko

Pavlov First Saint-Petersburg State Medical University

M. Sogoyan

Pavlov First Saint-Petersburg State Medical University

E. Berdnik

Pavlov First Saint-Petersburg State Medical University

A. Mazing

Pavlov First Saint-Petersburg State Medical University

W. Emanuel

Pavlov First Saint-Petersburg State Medical University

A. Akopov

Pavlov First Saint-Petersburg State Medical University

S. Orlov

Pavlov First Saint-Petersburg State Medical University

S. Bagnenko

Pavlov First Saint-Petersburg State Medical University

参考

  1. Bray F., Jacques Ferlay, Isabelle Soerjoma-taram, Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018. https://doi. org/10.3322/caac.21492.
  2. Arora R., Krishnan V. Selective Targeting of the L858R Mutation (EGFR) in NonSmall Cell Lung Cancer: A Mechanism for Advancing Targeted Chemotherapy. Front Oncol. 2017; 7. https://doi.org/10.3389/ fonc.2017.00104.
  3. Sokolenko A.P., Imyanitov E.N. Molecular Diagnostics in Clinical Oncology Front Mol. Biosci. 2018; 5: 76. https://doi.org/10.3389/ fmolb.2018.00076.
  4. Yang Y., Shen X., Li R., Shen J., Zhang H., Yu L. et al. The detection and significance of EGFR and BRAF in cell-free DNA of peripheral blood in NSCLC. Oncotarget. 2017. https://doi.org/10.18632/onco-target.17937.
  5. Лактионов К. К., Артамонова Е. В., Бредер В. В., Горбунова В. А., Моисеенко Ф. В., Реутова Е. В. и соавт. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. 2018; 8: 30-46.
  6. Lewandowska M.A., Czubak K., Klonowska K., Jozwicki W, Kowalewski J., Kozlowski P. The use of a two-tiered testing strategy for the simultaneous detection of small EGFR mutations and EGFR amplification in lung cancer. PLoS One. 2015. https://doi. org/10.1371/journal.pone.0117983.
  7. Ettinger D.S., Aisner D.L., Wood D.E., Akerley W, Bauman J., Chang J.Y. et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 5.2018. J. Natl Compr Cancer Netw. 2018. https://doi.org/10.6004/ jnccn.2018.0062.
  8. O'Kane G.M., Bradbury P.A., Feld R., Leighl N.B., Liu G., Pisters K.M. et al. Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer. 2017. https:// doi.org/10.1016/j.lungcan.2017.04.016.
  9. Lavdovskaia E.D., lyevleva A.G., Sokolenko A.P, Mitiushkina N.V., Preobrazhenskaya E.V, Tiurin VI. et al. EGFR T790M Mutation in TKI-Naive Clinical Samples: Frequency, Tissue Mosaicism, Predictive Value and Awareness on Artifacts. Oncol Res Treat. 2018. https://doi.org/10.1159/000491441.
  10. Maus M.K.H., Grimminger P.P., Mack PC., Astrow S.H., Stephens C., Zeger G. et al. KRAS mutations in non-small-cell lung cancer and colorectal cancer: Implications for EGFR-targeted therapies. Lung Cancer. 2014; 83: 163-7. https://doi.org/10.10Wj. lungcan.2013.11.010.
  11. Del Re M., Rofi E., Restante G., Crucitta S., Arrigoni E., Fogli S. et al. Implications of KRAS mutations in acquired resistance to treatment in NSCLC. Oncotarget. 2018. htt-ps://doi.org/10.18632/oncotarget.23553.
  12. Roman M., Baraibar I., Lopez I., Nadal E., Rolfo C., Vicent S. et al. KrAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol Cancer 2018. https://doi. org/10.1186/s12943-018-0789-x.
  13. Planchard D., Popat S., Kerr K., Novello S., Smit E.F, Faivre-Finn C. et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-upf. Ann Oncol. 2018. https://doi.org/10.1093/annonc/mdy275.
  14. Mazeres J., Barlesi F, Filleron T, Besse B., Monnet I., Beau-Faller M. et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: Results from the European EUHER2 cohort. Ann Oncol. 2016. https://doi. org/10.1093/annonc/mdv573.
  15. Мусаелян А.А., Чистяков И.В., Назаров В.Д., Лапин С.В., Согоян М.В., Хальчицкий С.Е., Эмануэль В.Л., Лобачевская Т.В., Акопов А.Л. Оптимизация метода мультитаргетной однонуклеотидной элонгации для определения соматических мутаций при злокачественных новообразованиях. Молекулярная медицина. 2019; 17 (2): 44-9. https://doi.org/10.29296/24999490-2019-02-06 [Musaelyan A.A., Chistyakov I.V, Nazarov V.D., Lapin S.V, Sogoyan M.V, Khalchitsky S.E., Emanuel W.L., Lobachevskaya T.W., Akopov A.L. Optimization of the method of the multi-target single-base elongation for the detection of somatic mutations in malignancies. Molekulyarnaya meditsina. 2019; 17 (2): 44-9 https://doi. org/10.29296/24999490-2019-02-06 (in Russian)]
  16. Su Z., Dias-Santagata D., Duke M., Hutchinson K., Lin Y.L., Borger D.R. et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J. Mol. Diagnostics. 2011; 13: 74-84. https://doi.org/10.10Wj. jmoldx.2010.11.010.
  17. Magnin S., Viel E., Baraquin A., Valmary-Degano S., Kantelip B., Pretet J.-L. et al. A multiplex SNaPshot assay as a rapid method for detecting KRAS and BRAF mutations in advanced colorectal cancers. J. Mol. Diagn. 2011. https://doi.org/10.10Wj. jmoldx.2011.05.010.
  18. Imyanitov N.E., Demidova A.I., Gordiev M., Filipenko M., Kekeyeva V.T., Moliaka K.Y. et al. Distribution of EGFR Mutations in 10,607 Russian Patients with Lung Cancer. 2016; 20. https://doi.org/10.1007/s40291-016-0213-4
  19. Chiu C.H., Yang C.T., Shih J.Y, Huang M.S., Su W.C., Lai R.S. et al. Epidermal growth factor receptor tyrosine Kinase inhibitor treatment response in advanced lung adenocarcinomas with G719X/L861Q/S768I mutations. J. Thorac. Oncol. 2015. https:// doi.org/10.1097/JTO.0000000000000504
  20. Lim S.M., Syn N.L., Cho B.C., Soo R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev 2018. https://doi.org/10.10Wj. ctrv. 2018.02.006

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2020
##common.cookie##