Provocation of oxidative stress by heavy metals as a possible trigger factor in the development of rheumatoid arthritis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Rheumatoid arthritis, like other multifactorial diseases, develops as a result of an inadequate response of a predisposed organism to environmental challenges. Material and methods. A review of the literature on the molecular mechanisms of the effects of heavy metals on the body. Results. It is known that ecotoxicants provoke various nonspecific processes in the body, including oxidative stress (OS). The latter, in turn, according to a fairly large number of studies, is represented in rheumatoid, and possibly plays a pathogenetic role in this disease. The aim of the review is to analyze the mechanisms of the possible role of heavy metals in the development of rheumatoid arthritis. The review presents an analysis of publications by Russian and foreign authors over the past 10 years. Since environmental factors are modifiable to a certain extent, the study of specific mechanisms of the triggering effect of these factors on individuals at risk is of great practical importance. Conclusion. The influence of the certain environmental factors, including heavy metals, as well as various combinations of these factors, on the development of rheumatoid arthritis in individuals at risk requires further study.

全文:

受限制的访问

作者简介

Elena Takha

Kazan State Medical Academy - a branch of the Federal State Budgetary Educational Institution of Additional Professional Education “Russian Medical Academy of Continuing Professional Education” of the Ministry of Health of the Russian Federation

Email: miwutka@yandex.ru

laboratory assistant of the central research laboratory

Eduard Shuralev

Federal State Autonomous Educational Institution of Higher Education «Kazan (Volga Region) Federal University»

Email: eduard.shuralev@mail.ru

Associate Professor of the Department of Applied Ecology

Yves Renaudineau

University Paul Sabatier

Email: yves.renaudineau@gmail.com

Laboratory of immunology, chu purpan, inserm1291/cnrs5051

Marina Arleevskaya

Kazan State Medical Academy - a branch of the Federal State Budgetary Educational Institution of Additional Professional Education “Russian Medical Academy of Continuing Professional Education” of the Ministry of Health of the Russian Federation; Federal State Autonomous Educational Institution of Higher Education «Kazan (Volga Region) Federal University»

编辑信件的主要联系方式.
Email: marleev@mail.ru

Senior Researcher of the Central Research Laboratory; Assistant of the Department of Fundamental Principles of Medicine

参考

  1. Croia C., Bursi R., Sutera D., Petrelli F., Alunno A., Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2019; 37 (3): 347-57.
  2. Gerlag D.M., Raza K., van Baarsen L.G., Brouwer E., Buckley C.D., Burmester G.R., Gabay C., Catrina A.I., Cope A.P., Cornelis F., Dahlqvist S.R., Emery P., Eyre S., Finckh A., Gay S., Hazes J.M., van der Helmvan Mil A., Huizinga T.W., Klareskog L., Kvien T.K., Lewis C., Machold K.P., Rönnelid J., van Schaardenburg D., Schett G., Smolen J.S., Thomas S., Worthington J., Tak P.P. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis. 2012; 71 (5): 638-41. https://doi.org/10.1136/annrheumdis-2011-200990.
  3. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4: 180 3. https://doi.org/10.1016Zj.redox.2015.01.002
  4. Cabello-Verrugio C., Simon F., Trollet C., F.Santibañez J., Oxidative Stress in Disease and Aging: Mechanisms and Therapies. Oxid Med Cell Longev. 2017; 2017: 4310469. https://doi.org/10.1155/2017/4310469
  5. Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014; 395 (2): 203-30. https://doi.org/10.1515/hsz-2013-0241.
  6. Ferreira H.B., Melo T., Paiva A., Domingues M. Insights in the Role of Lipids, Oxidative Stress and Inflammation in Rheumatoid Arthritis Unveiled by New Trends in Lipidomic Investigations. Antioxidants (Basel). 2021; 10 (1): 45. https://doi.org/10.3390/antiox10010045.
  7. Quinonez-Flores C.M., Gonzalez-Chavez S.A., Del Rio Najera D., Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. Biomed Res.Int. 2016; 2016: 6097417. https://doi.org/10.1155/2016/6097417.
  8. Burska A.N., Hunt L., Boissinot M., Strollo R., Ryan B.J., Vital E., Nissim A., Winyard P.G., Emery P., Ponchel F. Autoantibodies to Posttranslational Modifications in Rheumatoid Arthritis. Mediators of Inflammation. 2014; 2014: 492873. https://doi.org/10.1155/2014/492873.
  9. Brunekreef B., Holgate S.T. Air Pollution and Health. The Lancet. 2002; 360 (9341): 1233-42360. https://doi.org/10.1016/S0140-6736(02)11274-8.
  10. Hirao M., Yamasaki N., Oze H., Ebina K., Nampei A., Kawato Y., Shi K., Yoshikawa H., Nishimoto N., Hashimoto J. Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int. 2012; 32 (12): 4041-5. https://doi.org/10.1007/s00296-011-2135-0.
  11. Veselinovic M., Barudzic N., Vuletic M., Zivkovic V., Tomic-Lucic A., Djuric D., Jakovljevic V. Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. Mol. Cell. Biochem. 2014; 391 (1-2): 225-32. https://doi.org/10.1007/s11010-014-2006-6.
  12. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82 (1): 4795. https://doi.org/10.1152/Physrev.00018.2001.
  13. Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu Rev Biochem. 2017; 86: 715-48. https://doi.org/10.1146/annurev-biochem-061516-045037.
  14. Haberzettl P., O'toole T.E., Bhatnagar A., Conklin D.J. Exposure tofine particulate air pollution causes vascular insulin resistance byinducing pulmonary oxidative stress. Environ Health Perspect. 2016; 124: 1830-9. https://doi.org/10.1289/EHP212.
  15. Parmalee N.L., Aschner M. Metals and Circadian Rhythms. Adv Neurotoxicol. 2017; 1: 119-30. https://doi.org/10.1016/bs.ant.2017.07.003.
  16. Pourahmad J., O'Brien PJ. Contrasting role of Na(+) ions in modulating Cu(+2) or Cd(+2) induced hepatocyte toxicity. Chem Biol.Interact. 2000; 126 (2): 159-69. https://doi.org/10.1016/s0009-2797(00)00162-9.
  17. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol.Interact. 2006; 160 (1): 1-40. https://doi.org/10.1016/j.cbi.2005.12.009.
  18. Pereira C.S., Thompson J.A., Xavier K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013; 37 (2): 156-81. https://doi.org/10.1111/j.1574-6976.2012.00345.x.
  19. Lambert J.D., Elias R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010; 501 (1): 65-72. https://doi.org/10.1016/j.abb.2010.06.013.
  20. Aseervatham G.S., Sivasudha T., Jeyadevi R., Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans-an overview. Environ Sci Pollut Res Int. 2013; 20 (7): 4356-69. https://doi.org/10.1007/s11356-013-1748-0.
  21. Hartwig A. Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals. 2010; 23 (5): 951-60. https://doi.org/10.1007/s10534-010-9330-4
  22. Bertin G., Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006; 88 (11): 1549-59. https://doi.org/10.1016/j.biochi.2006.10.001
  23. Abdeen A., Abou-Zaid O.A., Abdel-Maksoud H.A., Aboubakr M., Abdelkader A., Abdelnaby A., Abo-Ahmed A.I., El-Mleeh A., Mostafa O., Abdel-Daim M., Aleya L. Cadmium overload modulates piroxicam-regulated oxidative damage and apoptotic pathways. Environ Sci Pollut Res Int. 2019; 26 (24): 25167-77. https://doi.org/10.1007/s11356-019-05783-x.
  24. Polykretis P., Cencetti F., Donati C., Luchinat E., Banci L. Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR. Redox Biol. 2019; 21: 101102. https://doi.org/10.1016/j.redox.2019.101102.
  25. Slepchenko K.G., Lu Q., Li Y.V. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia. Am. J. Physiol Cell Physiol. 2017; 313 (4): 448-59. https://doi.org/10.1152/ajpcell.00048.2017.
  26. Bonaventura P., Lamboux A., Albarede F., Miossec P. Differential effects of TNF-a and IL-1 p on the control of metal metabolism and cadmium-induced cell death in chronic inflammation. PLoS One. 2018; 13 (5): e0196285. https://doi.org/10.1371/journal.pone.0196285.
  27. Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12 (10): 1161-208. https://doi.org/10.2174/0929867053764635.
  28. Das K.K., Dasgupta S. Effect of nickel on testicular nucleic acid concentrations of rats on protein restriction. Biol Trace Elem Res. 2000; 73 (2): 175-80. https://doi.org/10.1385/BTER:73:2:175.
  29. Stinson T.J., Jaw S., Jeffery E.H., Plewa M.J. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicol Appl Pharmacol. 1992; 117 (1): 98-103. https://doi.org/10.1016/0041-008x(92)90222-e.
  30. Kumar V., Gill K.D. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 2014; 41: 154-66. 10.1016/j.neuro.2014.02.004' target='_blank'>https://doi.org/doi: 10.1016/j.neuro.2014.02.004.
  31. Morgan J.L., Thomas K., Braungart S., Nelson R.L. Transparent cap colonoscopy versus standard colonoscopy: a systematic review and metaanalysis. Tech Coloproctol. 2013; 17 (4): 353-60. https://doi.org/10.1007/s10151-013-0974-2.
  32. Mao B.H., Chen Z.Y., Wang Y.J., Yan S.J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018; 8 (1): 2445. https://doi.org/10.1038/s41598-018-20728-z.
  33. Comhair S.A., Erzurum S.C. Antioxidant responses to oxidant-mediated lung diseases. Am. J. Physiol Lung Cell Mol Physiol. 2002; 283 (2): 246-55. https://doi.org/10.1152/aj-plung.00491.2001
  34. Haddad J.J. Oxygen sensing and oxidant/ redox-related pathways. Biochem Biophys Res Commun. 2004; 316 (4): 969-77. https://doi.org/10.1016/j.bbrc.2004.02.162
  35. Якушева Е.Н., Мыльников П.Ю., Черных И.В., Щулькин А.В. Влияние мексидола на экспрессию транскрипционного фактора Nrf2 в коре больших полушарий головного мозга при экспериментальной ишемии. Журнал неврологии и психиатрии. 2018; 5: 63-7. https://doi.org/10.17116/jnevro20181186163-67
  36. Zhang L., Wang H. Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Molecular Neurobiology 2018; 55 (2): 1773-85. https://doi.org/10.1007/s12035-017-0456-z.
  37. Hayes J.D., Chanas S.A., Henderson C.J., McMahon M., Sun C., Moffat G.J., Wolf C.R., Yamamoto M. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyani-sole and ethoxyquin. Biochemical Society Transactions. 2000; 28 (2): 33-41. https://doi.org/10.1042/bst0280033.
  38. Zheng F., Gonçalves F.M., Abiko Y., Li H., Kumagai Y., Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020; 34: 101475. https://doi.org/10.1016/j.redox.2020.101475.
  39. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013; 53: 401-26. https://doi.org/10.1146/annurev-pharmtox-011112-140320.
  40. Silva-Islas C.A., Maldonado P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018; 134: 92-9. https://doi.org/10.1016/j.phrs.2018.06.013.
  41. Chen C.L., Chiou H.Y., Hsu L.I., Hsueh Y.M., Wu M.M., Chen C.J. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res. 2010; 110 (5): 455-62. https://doi.org/10.1016/j.envres.2009.08.010
  42. Brooks M.B., Stokol T, Catalfamo J.L.Comparative hemostasis: animal models and new hemostasis tests. Clin Lab Med. 2011; 31 (1): 139-59. https://doi.org/10.1016/j.cll.2010.10.009
  43. Chen R.E., Thorner J. Systems biology approaches in cell signaling research. Genome Biol. 2005; 6 (10): 235. https://doi.org/10.1186/ GB-2005-6-10-235
  44. Reboul C., Boissiere J., Andre L., Meyer G., Bideaux P., Fouret G., Feillet-Coudray C., Obert P., Lacampagne A., Thireau J., Cazorla O., Richard S. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway. Sci Rep. 2017; 7: 39715. https://doi.org/10.1038/srep39715
  45. Reboul C., Thireau J., Meyer G., Andre L., Obert P., Cazorla O., Richard S. Carbon monoxide exposure in the urban environment: an insidious foe for the heart? Respir Physiol Neurobiol. 2012; 184 (2): 204-12. https://doi.org/10.1016/j.resp.2012.06.010
  46. Durga M., Nathiya S., Rajasekar A., Devasena T. Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol. 2014; 38 (2): 518-30. https://doi.org/10.1016/j.etap.2014.08.003
  47. Donaldson K., Tran L., Jimenez L.A., Duffin R., Newby D.E., Mills N., MacNee W., Stone V.Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005; 2: 10. https://doi.org/10.1186/1743-8977-2-10
  48. Perricone C., Versini M., Ben-Ami D., Gertel S., Watad A., Segel M.J., Ceccarelli F., Conti F., Cantarini L., Bogdanos D.P., Antonelli A., Amital H., Valesini G., Shoenfeld Y. Smoke and autoimmunity: The fire behind the disease. Autoimmun Rev. 2016; 15 (4): 354-74. https://doi.org/10.1016/j.autrev.2016.01.001

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2022
##common.cookie##