Sirtuins: predictive molecular diagnosis of Alzheimer’s disease in long-liver

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The incidence of Alzheimer’s disease (AD) in people older 80 years old is 52%. Consequently, the predictive diagnostic of this neurodegenerative disease in long-liver is the actual goal of molecular medicine and gerontology. The aim of the research is to compare saliva concentration of sirtuins of long-liver in early AD stage and people without neuropathology. Methods. All long-liver were divided into 2 groups: «norm» (90-94 years old, n=14) and AD patients (90-95years old, n=15). The «norm» group includes persons without neuropathology and other somatic diseases in the acute phase. Saliva concentration of Sirt1, Sirt3, Sirt5, Sirt6 was measured by enzyme immunoassay method. Results. Saliva concentration of Sirt1, Sirt3 and Sirt6 AD patients was in 2.0, 3.7 and 3.0 times lower in comparison with corresponding parameter in the group «norm». Saliva concentration of Sirt5 of long-liver with Alzheimer’s disease and without neuropathology had no significant difference. Conclusion. Saliva concentration of Sirt1, Sirt3, Sirt6 assessment in the saliva of long-liver can apply as one of the criteria of molecular early AD diagnostic.

全文:

受限制的访问

作者简介

Anastasiia Pukhalskaya

Saint Petersburg Institute of Bioregulation and Gerontology

编辑信件的主要联系方式.
Email: nastyapuh96@mail.ru

the scientific research of the laboratory of molecular mechanisms of aging

Natalia Linkova

Saint Petersburg Institute of Bioregulation and Gerontology; Academy of postgraduate education underFSBU FSCC of FMBA of Russia; Belgorod National Research University

Email: miayy@yandex.ru

the head of the laboratory of molecular mechanisms of aging; professor of the Department of therapy, geriatrics and antiaging medicine of Academy of postgraduate education; Senior researcher of the Laboratory “Problem of Aging”

Roman Umnov

Saint Petersburg Institute of Bioregulation and Gerontology

Email: t.kmb@mail.ru

the scientific researcher of the Laboratory of Biogerontology of the Department of Biogerontology

Kirill Kozlov

Saint Petersburg Institute of Bioregulation and Gerontology

Email: kozlov_kl@mail.ru

the head of the Department of Clinical Gerontology and Geriatry

Igor Kvetnoy

Saint Petersburg State University; Saint Petersburg Scientific Research Institute of Phthisiopulmonology

Email: info@spbniif.ru

Head of the Center of Molecular Biomedicine; Рrofessor of the Department of Pathology

Mikhail Paltsev

Moscow State University

Email: mpaltz.ev@gmail.com

Director of Center of Immunology and Molecular Biomedicine

参考

  1. Breijyeh Z., Karaman R.Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules. 2020; 25 (24): 5789. https://doi.org/10.3390/molecules25245789.
  2. Trevisan K., Cristina-Pereira R., Silva-Amaral D., Aversi-Ferreira T.A. Theories of Aging and the Prevalence of Alzheimer's Disease. Biomed. Res.Int. 2019; 2019: 9171424. https://doi.org/10.1155/2019/9171424.
  3. Lopez O.L., Kuller L.H. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer's disease and other dementias. Handb. Clin. Neurol. 2019; 167: 139-48. https://doi.org/10.1016/B978-0-12-804766-8.00009-1.
  4. Aus6 E., G6mez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J. Pers. Med. 2020; 10 (3): 114. https://doi.org/10.3390/jpm10030114.
  5. Gleerup H.S., Hasselbalch S.G., Simonsen A.H. Biomarkers for Alzheimer's Disease in Saliva: A Systematic Review. Dis. Markers. 2019; 2019: 4761054. https://doi.org/10.1155/2019/4761054.
  6. Pukhalskaia A.E., Dyatlova A.S., Linkova N.S., Kozlov K.L., Kvetnaia T.V., Koroleva M.V., Kvetnoy I.M. Sirtuins as possible predictors of aging in Alzheimer's disease development: verification in the hippocampus and saliva. Bull. Exp. Biol. Med. 2020; 106 (6): 821-4. https://doi.org/10.1007/s105.17-020-04986-4
  7. Pukhalskaia A. E., Linkova N. S., Diatlova A. S., Kozlov K.L., Kvetnoy I. M., Koroleva M. V, Volkov A. M. Sirtuins Expression in the Hippocampus and Buccal Epithelium of Elderly and Senile Individuals with Alzheimer's Disease. Advances in Gerontology. 2021; 11 (2): 126-31. https://doi.org/10.1134/S2079057021020120
  8. Julien C., Tremblay C., Emond V, Lebbadi M., Salem N. Jr., Bennett D.A., Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2009; 68 (1): 48-58. https://doi.org/10.1097/NEN.0b013e3181922348
  9. Koo J.H., Kang E.B., Oh Y.S., Yang D.S., Cho J.Y Treadmill exercise decreases amyloid-p burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease. Exp. Neurol. 2017; 288: 142-52. https://doi.org/10.10Wj.expneurol.2016.11.014
  10. Marwarha G., Raza S., Meiers C., Ghribi O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta. 2014; 1842 (9): 1587-95. https://doi.org/10.1016/j.bbadis.2014.05.015.
  11. Lee J., Kim Y, Liu T., Hwang Y.J., Hyeon S.J., Im H., Lee K., Alvarez V.E., McKee A.C., Um S.J., Hur M., Mook-Jung I., Kowall N.W., Ryu H. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease. Aging Cell. 2018; 17 (1): e12679. https://doi.org/10.1111/acel.12679.
  12. Salvatori I., Valle C., Ferri A., Carri M.T SIRT3 and mitochondrial metabolism in neuro-degenerative diseases. Neurochem.Int. 2017; 109: 184-92. https://doi.org/10.10Wj.neuint.2017.04.012.
  13. Yin J., Han P., Song M., Nielsen M., Beach T.G., Serrano G.E., Liang W.S., Caselli R.J., Shi J. Amyloid-β Increases Tau by Mediating Sirtuin 3 in Alzheimer's Disease. Mol. Neurobiol. 2018; 55 (11): 8592-601. https://doi.org/10.1016/j.neuint.2017.04.012.
  14. Liu Y, Cheng A., Li Y.J., Yang Y., Kishimoto Y, Zhang S., Wang Y., Wan R., Raefsky S.M., Lu D., Saito T, Saido T., Zhu J., Wu L.J., Mattson M.P. SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat.Commun. 2019; 10 (1): 1886. https://doi.org/10.1038/s41467-019-09897-1.
  15. Cardinale A., de Stefano M.C., Mollinari C., Racaniello M., Garaci E., Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem. Res. 2015; 40 (1): 59-69. https://doi.org/10.1007/s11064-014-1465-1.
  16. Braidy N., Poljak A., Grant R., Jayasena T, Mansour H., Chan-Ling T., Smythe G., Sachdev P., Guillemin G.J. Differential expression of sirtuins in the aging rat brain. Front. Cell. Neurosci. 2015; 9: 167. https://doi.org/10.3389/fncel.2015.00167.
  17. Jung E.S., Choi H., Song H., Hwang Y.J., Kim A., Ryu H., Mook-Jung I. p53-dependent SIRT6 expression protects Ap42-induced DNA damage. Sci. Rep. 2016; 6: 25628. https://doi.org/10.1038/srep25628.
  18. Kaluski S., Portillo M., Besnard A., Stein D., Einav M., Zhong L., Ueberham U., Arendt T, Mostoslavsky R., Sahay A., Toiber D. Neuroprotective Functions for the Histone Deacetylase SIRT6. Cell Rep. 2017; 18 (13): 3052-62. https://doi.org/10.10Wj.celrep.2017.03.008.
  19. Tang B.L. Is SIRT6 Activity Neuroprotective and How Does It Differ from SIRT1 in This Regard? Front Cell Neurosci. 2017; 11: 165. https://doi.org/10.3389/fncel.2017.00165.

补充文件

附件文件
动作
1. JATS XML
2. Saliva’s sirtuins concentration in long-liver without neuropathology (the group «norm») and in persons with Alzheimer disease (AD) Note. * – р<0.05 in comparison with the corresponding value in the group «norm».

下载 (11KB)
##common.cookie##