Molecular mechanisms of skin biorevitalization: expression of signaling molecules under the action of trehalose-containing gel
- 作者: Zubareva T.S.1,2, Krylova Y.S.1,3, Panfilova A.S.1,2, Kvetnoy I.M.1,2, Gracheva S.G.4, Belova Y.I.1,2, Fedorina A.I.1,2, Trukhachev M.M.5, Rodina Y.A.6
-
隶属关系:
- FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation
- ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
- Pavlov First Saint Petersburg State Medical University
- “Face Sculpture Clinic” Ltd
- Primae Aesthetics Center
- JSC “Institute of Plastic Surgery and Cosmetology”
- 期: 卷 23, 编号 3 (2025)
- 页面: 48-55
- 栏目: Original research
- URL: https://journals.eco-vector.com/1728-2918/article/view/689041
- DOI: https://doi.org/10.29296/24999490-2025-03-06
- ID: 689041
如何引用文章
详细
Introduction: Biorevitalization is a modern method of injection cosmetology aimed at correcting age-related skin changes by introducing hyaluronic acid (HA) and additional biologically active components. The hyaluronic gel for microimplantation and mesotherapy, containing trehalose, differs from classical biorevitalizants by its complex action, aimed not only at moisturizing the skin, but also at stimulating its regenerative processes.
Purpose of the study: The purpose of this work was to study the features of the molecular mechanisms of skin biorevitalization under the action of the trehalose-containing gel.
Material and methods: Using the immunohistochemistry (IHC) method, which provides high selectivity in the detection and localization of molecules with antigenic properties in tissues, the expression of Aquaporin 3, NF-κB, PINK1, Parkin biomarkers in skin biopsies of patients before and after treatment was determined.
Results: The combination of hyaluronic acid and trehalose demonstrated a complex effect of the drug with the manifestation of molecular biological effects: skin hydration without the risk of hyperhydration, stimulation of mitophagy and metabolic activity, moderate regulation of inflammation, which generally contributes to physiological effective biorevitalization.
Conclusion. Injections of a gel based on hyaluronic acid and trehalose help to reduce dense collagen type I and the expression of Aquaporin 3, which increases the hydrophilicity of the dermal matrix and mitochondrial metabolic activity. Histological and immunohistochemical data confirmed that the combination of such components activates regeneration, improves skin hydration and reduces inflammation, which contributes to successful biorevitalization.
全文:

作者简介
Tatyana Zubareva
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
编辑信件的主要联系方式.
Email: molpathol@bk.ru
ORCID iD: 0000-0001-9518-2916
SPIN 代码: 2725-6105
Head of the Laboratory of Molecular Pathology, Department of Translational Biomedicine, Candidate of Biological Sciences, Senior Researcher of Functional Morphology Laboratory Department of Cell Biology and Pathology
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; Dynamo ave., 3, Saint Petersburg, 197110Yulia Krylova
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; Pavlov First Saint Petersburg State Medical University
Email: cmbm@spbniif.ru
ORCID iD: 0000-0002-8698-7904
SPIN 代码: 9729-7872
Senior Researcher, Laboratory of Molecular Pathology, Department of Translational Biomedicine, Assistant of the Pathological Anatomy Department, Candidate of Medical Sciences
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; L'va Tolstogo str., 6–8, Saint Petersburg, 197022Anna Panfilova
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
Email: cmbm@spbniif.ru
ORCID iD: 0000-0001-6872-3799
SPIN 代码: 7493-3382
research assistant at the Laboratory of Molecular Neuroimmunoendocrinology, Department of Translational Biomedicine, Researcher of Functional Morphology Laboratory Department of Cell Biology and Pathology
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; Dynamo ave., 3, Saint Petersburg, 197110Igor Kvetnoy
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
Email: igor.kvetnoy@yandex.ru
ORCID iD: 0000-0001-7302-5581
SPIN 代码: 7023-1838
Deputy Director for Fundamental Medicine, Head of the Department of Translational Biomedicine, Head of Functional Morphology Laboratory Department of Cell Biology and Pathology, Professor, Doctor of Medical Sciences
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; Dynamo ave., 3, Saint Petersburg, 197110Susanna Gracheva
“Face Sculpture Clinic” Ltd
Email: Susanna.grachev@gmail.com
ORCID iD: 0009-0006-1818-2246
SPIN 代码: 8637-4982
Dermatovenerologist, cosmetologist, head
俄罗斯联邦, Moskovskiy ave., 183–185, lit. A, Saint Petersburg, 196066Yulia Belova
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
Email: cmbm@spbniif.ru
ORCID iD: 0009-0007-0961-3515
SPIN 代码: 7197-4731
laboratory assistant-researcher of the laboratory of molecular pathology of the department of translational biomedicine, Researcher of Functional Morphology Laboratory Department of Cell Biology and Pathology
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; Dynamo ave., 3, Saint Petersburg, 197110Alena Fedorina
FSBI “St. Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of the Russian Federation; ANO NRC “Saint Petersburg Institute of Bioregulation and Gerontology”
Email: cmbm@spbniif.ru
ORCID iD: 0009-0002-3220-0368
SPIN 代码: 2971-5820
laboratory assistant-researcher of the laboratory of molecular neuroimmunoendocrinology of the department of translational biomedicine, Researcher of Functional Morphology Laboratory Department of Cell Biology and Pathology
俄罗斯联邦, Ligovsky ave., 2–4, St. Petersburg, 191036; Dynamo ave., 3, Saint Petersburg, 197110Mikhail Trukhachev
Primae Aesthetics Center
Email: m_truhachv@mail.ru
ORCID iD: 0009-0001-0788-0077
SPIN 代码: 8258-1240
Dermatovenerologist, cosmetologist, plastic surgeon, chief physician
俄罗斯联邦, Rodionovskaya str., 12, Moscow, 125466Yulia Rodina
JSC “Institute of Plastic Surgery and Cosmetology”
Email: rodina_y@mail.ru
ORCID iD: 0000-0001-9694-2796
SPIN 代码: 6185-5560
Candidate of Medical Sciences. Dermatovenerologist, cosmetologist, trichologist
俄罗斯联邦, Olkhovskaya str., 27, Moscow, 105066参考
- Marinho A., Nunes C., Reis S. Hyaluronic acid: a key ingredient in the therapy of inflammation. Biomolecules. 2021; 11 (10): 1518. doi: 10.3390/biom11101518
- Jin J. et al. Trehalose promotes functional recovery of keratinocytes under oxidative stress and wound healing via ATG5/ATG7. Burns. 2023; 49 (6): 1382–91. doi: 10.1016/j.burns.2022.11.014
- Boury-Jamot M., Daraspe J., Bonté F., Perrier E., Schnebert S., Dumas M., Verbavatz J.M. Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Aquaporins. 2009; 205–17. doi: 10.1007/978-3-540-79885-9_10
- Eiyama A., Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Current opinion in cell biology. 2015; 33: 95–101. doi: 10.1016/j.ceb.2015.01.002
- Hosseinpour-Moghaddam K., Caraglia M., Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J. of cellular physiology. 2018; 233 (9): 6524–43. doi: 10.1002/jcp.26583
- Chmielewski R., Lesiak A. Mitigating Glycation and Oxidative Stress in Aesthetic Medicine: Hyaluronic Acid and Trehalose Synergy for Anti-AGEs Action in Skin Aging Treatment. Clinical, Cosmetic and Investigational Dermatology. 2024; 2701–12. doi: 10.2147/CCID.S476362
- Franz S. et al. Overexpression of S100A9 in obesity impairs macrophage differentiation via TLR4-NFkB-signaling worsening inflammation and wound healing. Theranostics. 2022; 12 (4): 1659. doi: 10.7150/thno.67174
- Chou Y. et al. Progress in the development of stem cell-derived cell-free therapies for skin aging. Clinical, Cosmetic and Investigational Dermatology. 2023; 3383–406. doi: 10.2147/CCID.S434439
- Bollag W. B. et al. Aquaporin-3 in the epidermis: more than skin deep. American J. of Physiology-Cell Physiology. 2020; 318 (6): 1144–53. doi: 10.1152/ajpcell.00075.2020
- Yan Z. J. et al. Artificial aquaporin that restores wound healing of impaired cells. J. of the American Chemical Society. 2020; 142 (37): 15638–43. doi: 10.1021/jacs.0c00601
- Osman S. PINK spots: Diseased mitochondria prepare for mitophagy.Nature Structural & Molecular Biology. 2022; 29 (2): 82. doi: 10.1038/s41594-022-00733-7
- Han H. et al. PINK 1 phosphorylates Drp1S616 to regulate mitophagy-independent mitochondrial dynamics. EMBO reports. 2020; 21 (8): e48686. doi: 10.15252/embr.201948686
- Koyano F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014; 510 (7503): 162–6. doi: 10.1038/nature13392.
补充文件
