Designing of the model of raw materials supply management system for the industrial enterprises on the basis of the classical automatic control theory

Abstract


The new approach to the solution of a problem of raw materials supply management for the industrial enterprises which distinctive feature from existing is use of the classical means of the automatic control theory for designing of models, criteria and algorithms of supply management is stated. The example of the supply management systems model designing in the form of transfer functions and the results of numerical modeling of controlled processes in the software package Simulink are given.

Full Text

Как показывает практика управления промышленными предприятиями, одной из первоочередных задач, решение которой необходимо для обеспечения успешного их функционирования, является эффективная организация поставок сырья и комплектующих, потребляемых в результате осуществления производственного процесса. Высокий приоритет и важность этой задачи подтверждается и большим количеством работ по данному направлению в теории исследования операций, и не ослабевающим интересом к ней со стороны разработчиков автоматизированных систем управления предприятиями. Не случайно одними из первых автоматизированных систем управления на производственных предприятиях после начала широкого распространения компьютерной техники стали системы планирования потребностей в материалах (Material Requirement Planning – MRP). Методология и алгоритмы MRP до сих пор остаются центральным звеном современных интегрированных систем управления ресурсами предприятий (Enterprise Resource Planning). Результаты теоретических исследований и практические разработки по данному направлению взаимно дополняют друг друга, но на текущий момент имеют весьма ограниченную, на наш взгляд, область пересечения. При этом степень их взаимного проникновения не позволяет пока говорить о широком применении имеющейся теоретической базы в качестве инструментального средства разработки используемых в реальной производственной практике систем управления. С другой стороны, отсутствует достаточно эффективная обратная связь от разработчиков и пользователей данных систем к научному сообществу, в связи с чем его огромный потенциал остается здесь не вполне востребованным. Описанные выше проблемы характерны и для других областей управления производственными и бизнес-процессами. В то же время в смежной области задач управления, а именно автоматизации управления технологическими процессами и установками, картина взаимодействия и параллельного развития теории и практики выглядит кардинально иным образом. Здесь теоретическая база исследования задач управления развивается в рамках теории автоматического управления (ТАУ), представляющей собой область научного знания, имеющего дедуктивную структуру и высокую степень формализации, единую методологическую основу и развитый математический аппарат. При этом полученные в ТАУ результаты имеют строгое математическое обоснование и в то же время доведены до уровня прикладных инженерных методик, на базе которых построено большое количество систем автоматизированного проектирования систем автоматического управления. С другой стороны, проблемы управления, находящие успешное решение в ТАУ, ставятся перед ней непосредственно инженерной практикой. И здесь особо следует подчеркнуть, что в рамках ТАУ не постулируется природа управляемых объектов и процессов, а значит, полученные ею результаты имеют универсальный характер и применимы в различных областях человеческой деятельности. Последнее обстоятельство естественным образом вызывает интерес к исследованию возможности ее применения для решения нетипичных для ее приложения задач управления нетехническими объектами. В том числе в качестве объекта управления можно рассмотреть склад (или любое другое сооружение аналогичного назначения) производственного предприятия, в котором формируется определенный запас сырья, материалов и комплектующих, и сформулировать и решить задачу управления бизнес-процессом их поставки (или производства) с целью поддержания уровня запасов, обеспечивающего эффективную работу предприятия. Итак, перейдем к постановке задачи. Отметим, что, как правило, с целью снижения накладных расходов предприятия стремятся свести к минимуму уровень своих запасов. Одновременно с этим они предпочитают держать некоторый резерв запасов на случай непредвиденных обстоятельств (например таких, как задержки поставок, обнаружение брака, неожиданное увеличение спроса и т. д.), чтобы не допускать простоев производства или срыва поставок готовой продукции. Этот резерв получил название «страховой запас». В таком случае задача управления состоит в том, чтобы поддерживать постоянный заданный уровень страхового запаса при условии возможного проявления возмущающих факторов, упомянутых выше. Построим математическую модель рассматриваемой задачи. Объектом управления в данном случае является склад, в котором происходит накопление материалов, сырья и т. п. Текущий уровень содержимого склада определяется объемом поступлений товарно-материальных ценностей и их потребления на временном отрезке от начального до текущего момента времени: , (1) где D(τ) – уровень содержимого склада; f post(τ) – входящий поток, представляющий собой поставку материалов; f potr(τ) – исходящий поток, представляющий собой потребление материалов. С точки зрения ТАУ склад представляет собой интегрирующее звено [1], на входе которого действует сигнал, равный разнице между потоком поставки материалов и потоком их потребления: . (2) В силу того, что состояние складских запасов меняется не непрерывно, а только в моменты поступления товаров на склад или их списания со склада, и сам процесс формирования и выдачи заказа на пополнение складских запасов носит дискретный характер, предлагается перейти к дискретному описанию модели системы управления поставками. Передаточная функция рассматриваемого объекта управления в дискретном виде представлена ниже [1]: . (3) Роль органа управления играет отдел снабжения, работа которого заключается в регулярном определении необходимого размера пополнения запаса, при котором обеспечивается достижение и поддержание заданного страхового уровня при минимизации затрат, связанных с заказом и хранением товара, а также потерями из-за неудовлетворенного спроса. Алгоритм принятия решений предлагается реализовать в виде дискретного ПИД-регулятора, который будет формировать сигнал, соответствующий сформированным отделом снабжения заказам на поставку сырья. Передаточная функция дискретного ПИД-регулятора представлена ниже: ; (4) ; (5) ; (6) , (7) где К – коэффициент передачи; TД – постоянная дифференцирования; TИ – постоянная интегрирования; T – период дискретизации. Кроме того, в модели необходимо учесть временную задержку, существующую между моментом формирования заказа и моментом поставки товарно-материальных ценностей на склад, т. е. ввести в модель системы звено запаздывания [2]: . (8) Как уже было упомянуто выше, на уровень складских запасов оказывает непосредственное влияние потребление товаров со склада, подверженное влиянию случайных факторов. Данное воздействие в системе управления поставками является возмущающим и действует на входе объекта управления, т. е. склада. Очевидно, что если бы отсутствовало потребление товаров со склада, то и уровень запасов оставался бы постоянным и отсутствовала бы необходимость в обеспечении поставок. Процесс учета товарно-материальных ценностей на складе представляет собой обратную связь в системе управления поставками, без которой невозможно осуществить поддержание заданного уровня запасов, значение которого является своего рода уставкой регулирования. С учетом приведенного выше описания процесс управления поставками можно представить в виде следующей функциональной схемы (рис. 1). Р и с. 1. Структурно-функциональное представление модели управления поставками Здесь: входным сигналом модели является заданный уровень страхового запаса; объект управления – склад – представлен интегратором; на входе объекта управления действует возмущающее воздействие – потребление материалов со склада; управляющий орган – отдел снабжения, задачей которого является поддержание заданного уровня страхового запаса материалов на складе. В связи с наличием временных задержек по поставкам в модель управления поставками включено звено запаздывания. Представленная модель с целью проведения численных экспериментов была реализована в пакете прикладных программ MATLAB с помощью средства моделирования динамических систем Simulink. Для построения модели были использованы следующие функциональные блоки Simulink: Блок дискретной передаточной функции Discrete Transfer Fcn. Задает дискретную передаточную функцию в виде отношения полиномов. Блок дискретного ПИД-регулятора Discrete PID Controller. Источник постоянного сигнала Constant. Задает постоянный по уровню сигнал. Блок единичной дискретной задержки Unit Delay. Выполняет задержку входного сигнала на один шаг модельного времени. Источник сигнала Pulse Generator. Формирует импульсный сигнал. Блок вычисления суммы Sum. Выполняет вычисление суммы текущих значений сигналов. На рис. 2 изображена модель управления поставками на предприятии, реализованная в Simulink. Р и с. 2. Модель управления поставками на предприятии, реализованная в Simulink Источником входного сигнала в модели служит блок Constant, в котором задается L – уровень страхового запаса, поддерживаемого на предприятии. Данный сигнал, являющийся для системы управления не чем иным, как уставкой регулирования, поступает на сумматор, в котором вычисляется разница между значением уставки и текущим значением регулируемой величины, или другими словами – ошибка регулирования. Таким образом, на входе дискретного ПИД-регулятора действует ошибка регулирования. Дискретный ПИД-регулятор в модели имитирует работу отдела снабжения. Выходным сигналом этого блока является объем поставляемого товара, который требуется для поддержания заданного уровня L. Учитывая ненулевую продолжительность процесса доставки товарно-материальных ценностей на склад, в модели выходной сигнал с регулятора проходит через блок Unit Delay, с помощью которого задается временная задержка. Источником сигнала, имитирующего ежедневный объем потребляемой продукции, служит блок Generator, в нем и будет задаваться возмущающее воздействие. В итоге два сформировавшихся сигнала (объем поставок и потребления) поступают на сумматор, в котором вычисляется их разность. Полученное значение поступает на вход объекта управления – блок Discrete Transfer Fcn, алгоритм работы которого описывается выражением (3). Для того чтобы поддерживать заданный уровень запасов, в модель введена отрицательная обратная связь, по которой передается значение текущего уровня запасов на сумматор перед ПИД-регулятором, формируя тем самым ошибку регулирования. Оценим перспективы применения предложенного подхода к решению задачи управления объемами поставки бензола, являющегося исходным сырьем для производства изопропилбензола на предприятии ЗАО «Самараоргсинтез». Прием, хранение и выдача бензола осуществляются во вспомогательном цехе завода. Поставка сырья осуществляется в железнодорожных цистернах; хранение – в специальных емкостях. Объем запаса сырья ежедневно фиксируется, данная информация передается в отдел снабжения. Необходимый объем содержания бензола в емкостях поддерживается за счет изменения объема поставок. То есть уровень страхового запаса применительно к данному предприятию регулируется объемами поставок, решение относительно которых принимается в отделе снабжения. Из вспомогательного цеха бензол насосом подают в цех получения изопропилбензола методом алкилирования бензола пропиленом в присутствии катализатора ALCL3. В свою очередь, изопропилбензол является сырьем для производства фенола и ацетона. ЗАО «Самараоргсинтез» на данный момент является одним из ведущих производителей фенола и ацетона в России, поддерживающем на высоком уровне объем выпуска продукции, которая пользуется постоянно увеличивающимся спросом. Для данного предприятия задача оптимального управления поставками исходного сырья является актуальной. Примем следующие исходные данные и параметры модели: необходимый уровень запасов бензола на предприятии L = 600 тн; задержка между формированием регулятором задания на поставку необходимого количества сырья и собственно поступлением его во вспомогательный цех, из которого производится отбор продукта на переработку, равна одному дню (один шаг в модели). Для нахождения оптимальных настроек регулятора в Simulink-модели воспользуемся возможностями раздела Simulink Response Optimization. Для этого задействуем вспомогательный блок PID Tuning, который позволяет определять настройки ПИД-регулятора путем оптимизации временных сигналов исходя из заданных пользователем условий. Для представленной выше модели в качестве такого условия (критерия) была выбрана минимизация перерегулирования абсолютной величины текущего уровня запасов (9) где ∆ – абсолютная величина перерегулирования; Lmax – максимальное отклонение от заданного значения уровня страхового запаса; L0 – заданное значение уровня страхового запаса. Результатом использования блока PID Tuning для рассматриваемой модели являются следующие настройки ПИД-регулятора: коэффициент пропорциональности равен 0,5294; коэффициент интегрирования 0,175; коэффициент дифференцирования 0,066. Для оценки динамических свойств системы в сигнал на входе объекта управления ввели «единичный» скачок объемов отбора продукта на переработку (рис. 3). Р и с. 3. Ежедневный отбор сырья на переработку На рис. 4 изображен сигнал с выхода дискретного ПИД-регулятора, т. е. объем поставок сырья на склад. Р и с. 4. Сигнал с выхода ПИД-регулятора На рис. 5 представлен выходной сигнал с дискретного интегратора (уровень запасов). Р и с. 5. Выходной сигнал с интегратора (уровень запасов) Приведенные результаты моделирования показывают, что рассматриваемая система управления поставками устойчива и позволяет достигать основной цели управления – поддержание заданного уровня запасов. При этом для реализации управления на каждом временном шаге необходима только информация о текущем уровне запасов на складе и нет необходимости в прогнозе или оценке предполагаемого будущего уровня их потребления. Это существенно снижает требования к технической реализации системы. Указанные выше обстоятельства говорят о том, что предложенную концепцию управления поставками вполне можно принять за основу при разработке соответствующей автоматизированной системы управления. При этом в дальнейшем необходимо будет принять во внимание следующие обстоятельства. Во-первых, необходимо учитывать конечную вместимость емкостей для хранения сырья. То есть при определенных условиях задача управления поставками может стать нелинейной, что, соответственно, необходимо будет учесть при построении алгоритма управления. Кроме того, целесообразно уточнить критерий управления поставками исходя из соображений экономического характера, а именно из условия минимизации совокупных затрат на управление поставками и хранение запасов.

About the authors

Anton V Sergeev

Samara State Technical University

Email: sergeev-av@samaraenergo.ru
244, Molodogvardeyskaya st., Samara, 443100
(Ph.D. (Techn.)), Associate Professor

Aleksey A Novikov

Samara State Technical University

244, Molodogvardeyskaya st., Samara, 443100
Postgraduate Student

References

  1. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. – М.: Наука. Главная редакция физико-математической литературы, 1975. – 768 с.
  2. Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. – М.: Наука. Главная редакция физико-математической литературы, 1979. – 256 с.

Statistics

Views

Abstract - 32

PDF (Russian) - 7

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies