On a micropolar theory of growing solids

Cover Page

Cite item

Abstract

The present paper is devoted to the problem of boundary conditions formulation in the growing micropolar solid mechanics. The static equations of the micropolar continuum in terms of relative tensors (pseudotensors) are derived due to virtual work principle for a solid of constant staff. The constitutive quadratic form of the elastic potential (treated as an absolute scalar) for a linear hemitropic micropolar solid is presented and discussed. The constitutive equations for symmetric and antisymmetric parts of force and couple stress tensors are given. The final forms of the static equations for the hemitropic micropolar continuum in terms of displacements and microrotations rates are obtained including the case of growing processes. A transformation of the equilibrium equations is proposed to obtain boundary conditions on the propagating growing surface in terms of relative tensors in the form of differential constraints. Those are valid for a wide range of materials and metamaterials. The algebra of rational relative invariants is intensively used for deriving the constitutive relations on the growing surface. Systems of joint algebraic rational relative invariants for force, couple stress tensors and also unit normal and tangent vectors to propagating growing surface are obtained, including systems of invariants sensitive to mirror reflections and 3D-space inversions.

About the authors

Eugenii Valeryevich Murashkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: murashkin@dvo.ru, murashkin@ipmnet.ru, evmurashkin@gmail.com
Candidate of physico-mathematical sciences, no status

Yuri Nikolaevich Radayev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: y.radayev@gmail.com, radayev@ipmnet.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Berman B., "3-D printing: The new industrial revolution", Business Horizons, 55:2 (2012), 155-162
  2. Southwell R. V., An introduction to the theory of elasticity. For engineers and physicists, Oxford Engineering Science Series, Oxford Univ. Press, London, 1936
  3. Epstein M., Maugin G. A., "Thermomechanics of volumetric growth in uniform bodies", Int. J. Plast., 16:7-8 (2000), 951-978
  4. Maugin G. A., "On inhomogeneity, growth, ageing and the dynamics of materials", J. Mech. Mater. Struct., 4:4 (2009), 731–741
  5. Ciarletta P., Preziosi L., Maugin G. A., "Mechanobiology of interfacial growth", J. Mech. Phys. Solids, 61:3 (2013), 852–872
  6. Ciarletta P., Ambrosi D., Maugin G. A., Preziosi L., "Mechano-transduction in tumour growth modelling Physical constraints of morphogenesis and evolution", Eur. Phys. J. E, 36 (2013), 23
  7. Ciarletta P., Ambrosi D., Maugin G. A., "Configurational forces for growth and shape regulations in morphogenesis", Bull. Pol. Acad. Sci., Tech. Sci., 60:2 (2012), 253-257
  8. Porubov A. V., Maugin G. A., "Application of non-linear strain waves to the study of the growth of long bones", Int. J. Non-Linear Mech., 46:2 (2011), 387–394
  9. Maugin G. A., "From the propagation of phase-transition fronts to the evolution of the growth plate in long bones", Proc. Est. Acad. Sci., 59:2 (2010), 72–78
  10. Ciarletta P., Preziosi L., Maugin G. A., "Thermo-mechanics of growth and mass transfer: morphogenesis of seashells", Computer Methods in Biomechanics and Biomedical Engineering, 15:Suppl. 1 (2012), 110–112
  11. Ciarletta P., Maugin G. A., "Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling", Int. J. Non-Linear Mech., 46:10 (2011), 1341–1346
  12. Goriely A., The Mathematics and Mechanics of Biological Growth, Interdisciplinary Applied Mathematics, 45, Springer, New York, 2017, xxii+646 pp
  13. Veblen O., Thomas T. Y., "Extensions of Relative Tensors", Trans. Amer. Math. Soc., 26:3 (1924), 373-377
  14. Veblen O., Invariants of Quadratic Differential Forms, Cambridge Tracts in Mathematics and Mathematical Physics, 24, Cambridge University Press, Cambridge, 1927, viii+102 pp.
  15. Levi-Cività T., The Absolute Differential Calculus (Calculus of Tensors), Blackie & Son, London, Glasgow, 1927, xvi+450 pp.
  16. Hawking S. W., Israel W., General Relativity. An Einstein Centenary Survey, Cambridge University Press, Cambridge, 1979, xviii+919 pp.
  17. Schouten J. A., Tensor Analysis for Physicist, Oxford University Press, New York, 1951, 276 pp.
  18. Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley & Sons, New York, 1964, xii+361 pp.
  19. Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Gröningen, 1964, viii+429 pp.
  20. Synge J. L., Schild A., Tensor Calculus, v. 5, Courier Corporation, New York, 1978, 334 pp.
  21. Truesdell C., Toupin R., "The Classical Field Theories", Principles of Classical Mechanics and Field Theory. Encyclopedia of Physics, Encyclopedia of Physics, v. 2/3/1, eds. S. Flügge, Springer, Berlin, Heidelberg, 1960, 226-902
  22. Das A. J., Tensors: The mathematics of relativity theory and continuum mechanics, Springer, New York, 2007, xii+290 pp
  23. Rashba E. I., "Stresses computation in massive construction under their own weight taking into account the construction sequence", Proc. Inst. Struct. Mech. Acad. Sci. Ukrainian SSR, 1953, no. 18, 23-27 (In Russian)
  24. Kharlab V. D., "Linear creep theory of the build-up body. Mechanics of rod systems and solid mediums", The Proceedings of the Leningrad Civil Engineering Institute, v. 49, Leningrad Civil Engineering Institute, Leningrad, 1966, 93-119 (In Russian)
  25. Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., "Dynamic expansion of an elastic layer. Part 1. Motion of a flow of precipitated ppapers at a variable rate", Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 5, 6-24 (In Russian)
  26. Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., "Dynamical expansion of an elastic layer. Part 2. The case of drop of accreted ppapers at a constant rate", Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 6, 99-112 (In Russian)
  27. Naumov V. E., Radayev Yu. N., Thermomechanical model of an growing solids: Variational formulation, Preprint no. 527, IPMech RAS, Moscow, 1993, 39 pp. (In Russian)
  28. Dmitrieva A. M., Naumov V. E., Radayev Yu. N., Growth of thermoelastic spherical layer: Application of the variational approach, Preprint no. 528, IPMech RAS, Moscow, 1993, 64 pp. (In Russian)
  29. Kovalev V. A., Radayev Yu. N., "On a form of the first variation of the action integral over a varied domain", Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:2 (2014), 199-209 (In Russian)
  30. Arutyunyan N. Kh., Naumov V. E., "The boundary value problem of the theory of viscoelastic plasticity of a growing body subject to aging", J. Appl. Math. Mech., 48:1 (1984), 1-10
  31. Trincher V. K., "On the formulation of the problem of stresses calculation in the gravitational state of a growing solid", Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1984, no. 2, 119-124 (In Russian)
  32. Bykovtsev G. I., Izbrannye problemnye voprosy mekhaniki deformiruemykh sred [Selected Problems from Solid Mechanics. Collection of papers], Dal'nauka, Vladivostok, 2002, 566 pp. (In Russian)
  33. Radayev Yu. N., "The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504-517 (In Russian)
  34. Courant R., Gilbert D., Metody matematicheskoi fiziki [Methods of Mathematical Physics], Gostekhteoretizdat, Moscow, Leningrad, 1933, 528 pp. (In Russian)
  35. Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie [Calculus of Variations], Fizmatlit, Moscow, 1961, 228 pp. (In Russian)
  36. Gunter N. M., Kurs variatsionnogo ischisleniia [A Course of the Calculus of Variations], Gostekhteoretizdat, Moscow, Leningrad, 1941, 308 pp. (In Russian)
  37. Kovalev V. A., Radayev Yu. N., "On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity", Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 19:4 (2019), 454-463 (In Russian)
  38. Radayev Yu. N., Kovalev V. A., "On plane thermoelastic waves in hemitropic micropolar continua", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 464-474
  39. Rosenfeld B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian)
  40. Rosenfeld B. A., A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, Studies in the History of Mathematics and Physical Sciences, 12, Springer, New York, 1988, ix+471 pp
  41. Murashkin E. V., Radayev Yu. N., "On a differential constraint in asymmetric theories of the mechanics of growing solids", Mech. Solids, 54:8 (2019), 1157-1164
  42. Murashkin E. V., Radayev Yu. N., "On a differential constraint in the continuum theory of growing solids", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019), 646-656
  43. Murashkin E. V., Radayev Yu. N., "On a Class of Constitutive Equations on Propagating Growing Surface", Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State, 2019, no. 3(41), 11-29 (In Russian)
  44. Hamilton W. R., Lectures on Quaternions, Cambridge University Press, Cambridge, 1866, lx+762 pp
  45. Cayley A., "A memoir on the theory of matrices", Philos. Trans. R. Soc. Lond., 1858, no. 148, 17-37

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies