A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation

Cover Page


Cite item

Full Text

Abstract

The problem of the acceleration of the iterative process of numerical solution by the collocation and least squares (CLS) method of boundary value problems for partial differential equations is considered. For its solution, it is proposed to apply simultaneously three ways to accelerate the iterative process: preconditioner, multigrid algorithm, and Krylov method. A method for finding the optimal values of the parameters of the two-parameter preconditioner is proposed. The use of the found preconditioner significantly accelerates the iterative process. The influence on the iterative process of all three ways of its acceleration is investigated: each separately, and also at their combined application. The application of the algorithm using Krylov subspaces gives the greatest contribution. The combined use of all three ways to speed up the iteration process of solving boundary value problems for two-dimensional Navier-Stokes equations has reduced the CPU time up to 362 times as compared with the case when only one of them, the preconditioner, was applied.

About the authors

Evgenii Vasil'evich Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: vorozh@itam.nsc.ru
Doctor of physico-mathematical sciences, Professor

Vasiliy Pavlovich Shapeev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Doctor of physico-mathematical sciences, Professor

References

  1. Ferziger J. H., Peric M., Street R. L., Computational Methods for Fluid Dynamics, Springer, Cham, 2020, xviii+596 pp.
  2. Reddy J. N., Gartling D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, 2010, xxiii+501 pp.
  3. Moukalled F., Mangani L., Darwish M., The Finite Volume Method in Computational Fluid Dynamics, Springer, Heidelberg, 2016, xxiii+791 pp.
  4. Jiang B. N., The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer, Berlin, 1998, xvi+418 pp.
  5. Kim N., Reddy J. N., "A spectral/hp least-squares finite element analysis of the Carreau-Yasuda fluids", Int. J. Numer. Meth. Fluids, 82:9 (2016), 541-566
  6. Ranjan R., Chronopoulos A. T., Feng Y., "Computational algorithms for solving spectral/hp stabilized incompressible flow problems", J. Math. Res., 8:4 (2016), 21-39
  7. Ramšak M., Škerget L., "A subdomain boundary element method for high-Reynolds laminar flow using stream function-vorticity formulation", Int. J. Numer. Meth. Fluids, 46:8 (2004), 815-847
  8. Zhang X., An X., Chen C. S., "Local RBFs based collocation methods for unsteady Navier-Stokes equations", Adv. Appl. Math. Mech., 7:4 (2015), 430-440
  9. Плясунова А. В., Слепцов А. Г., "Коллокационно-сеточный метод решения нелинейных параболических уравнений на подвижных сетках", Моделирование в механике, 18:4 (1987), 116-137
  10. Исаев В. И., Шапеев В. П., "Варианты метода коллокаций и наименьших квадратов повышенной точности для численного решения уравнений Навье-Стокса", Ж. вычисл. матем. и матем. физ., 50:10 (2010), 1758-1770
  11. Исаев В. И., Шапеев В. П., "Метод коллокаций и наименьших квадратов повышенной точности для решения уравнений Навье-Стокса", Докл. РАН, 442:4 (2012), 442-445
  12. Shapeev V.P., Vorozhtsov E.V., "Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier-Stokes equations", Computer Algebra in Scientific Computing. CASC 2012, Lecture Notes in Computer Science, 7442, Springer, Heidelberg, 2012, 321-333
  13. Shapeev V. P., Vorozhtsov E. V., "Symbolic-numerical optimization and realization of the method of collocations and least residuals for solving the Navier-Stokes equations", Computer Algebra in Scientific Computing. CASC 2016, Lecture Notes in Computer Science, 9890, Springer, Cham, 2016, 473-488
  14. Исаев В. И., Шапеев В. П., Еремин С. А., "Исследование свойств метода коллокации и наименьших квадратов решения краевых задач для уравнения Пуассона и уравнений Навье-Стокса", Вычислит. технологии, 12:3 (2007), 1-19
  15. Vorozhtsov E. V., Shapeev V. P., "On the efficiency of combining different methods for acceleration of iterations at the solution of PDEs by the method of collocations and least residuals", Appl. Math. Comput., 363 (2019), 1-19
  16. Федоренко Р. П., "О скорости сходимости одного итерационного процесса", Ж. вычисл. матем. и матем. физ., 4:3 (1964), 559-564
  17. Крылов А. Н., "О численном решении уравнения, которым в технических вопросах определяются частоты малых колебаний материальных систем", Изв. АН СССР, VII сер., Отд. матем. и естеств. наук, 1931, № 4, 491-539
  18. Saad Y., Numerical Methods for Large Eigenvalue Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2011, xvi+276 pp.
  19. Kirkpatrick M. P., Armfield S. W., Kent J. H., "A representation of curved boundaries for the solution of the Navier-Stokes equations on staggered three-dimensional Cartesian grid", J. Comput. Phys., 184:1 (2003), 1-36
  20. Abbassi H., Turki S., Nasrallah Ben S., "Channel flow past bluff body: outlet boundary condition, vortex shedding and effects of buyoancy", Comput. Mech., 28:1 (2002), 10-16
  21. Erturk E., "Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solution", Comput. Fluids, 37:6 (2008), 633-655
  22. Шапеев В. П., Ворожцов Е. В., Исаев В. И., Идимешев С. В., "Метод коллокаций и наименьших невязок для трехмерных уравнений Навье-Стокса", Выч. мет. программирование, 14:3 (2013), 306-322
  23. Demmel J. W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 1997, viii+418 pp.
  24. Saad Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2003, xvi+447 pp.
  25. Wesseling P., An Introduction to Multigrid Methods, John Wiley & Sons, Chichester, 1992, vi+284 pp.
  26. Chiu P. H., Sheu T. W. H., Lin R. K., "An effective explicit pressure gradient scheme implemented in the two-level non-staggered grids for incompressible Navier-Stokes equations", J. Comput. Phys., 227:8 (2008), 4018-4037
  27. Shapeev V. P., Vorozhtsov E. V., "CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier-Stokes equations", Computer Algebra in Scientific Computing. CASC 2014, Lecture Notes in Computer Science, 8136, Springer, Heidelberg, 2013, 381-392
  28. Gartling D. K., "A test problem for outflow boundary conditions - flow over a backward-facing step", Int. J. Numer. Methods Fluids, 11:7 (1990), 953-967
  29. Воеводин В. В., Вычислительные основы линейной алгебры, Наука, М., 1977
  30. Мартыненко С. И., "Совершенствование вычислительных алгоритмов для решения уравнений Навье-Стокса на структурированных сетках", Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2008, № 2, 78-94
  31. Rouizi Y., Favennec Y., Ventura J., Petit D., "Numerical model reduction of 2D steady incompressible laminar flows: Application on the flow over a backward-facing step", J. Comput. Phys., 228:6 (2009), 2239-2255
  32. Parsani M., Ghorbaniasl G., Lacor C., "Analysis of the implicit LU-SGS algorithm for 3rd- and 4th-order spectral volume scheme for solving the steady Navier-Stokes equations", J. Comput. Phys., 230:19 (2011), 7073-7085
  33. Roberts N. V., Demkowicz L., Moser R., "A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations", J. Comput. Phys., 301 (2015), 456-483
  34. Bustamante C. A., Power H., Florez W. F., "A global meshless collocation particular solution method for solving the two-dimensional Navier-Stokes system of equations", Comput. Math. Appl., 65:12 (2013), 1939-1955
  35. Shapeev A. V., Lin P., "An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows", SIAM J. Sci. Comput., 31:3 (2009), 1874-1900
  36. Ghia U., Ghia K. N., Shin C. T., "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method", J. Comput. Phys., 48:3 (1982), 387-411
  37. Botella O., Peyret R., "Benchmark spectral results on the lid-driven cavity flow", Comput. Fluids, 27:4 (1998), 421-433
  38. Erturk E., Corke T. C., Gökçöl C., "Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers", Int. J. Numer. Methods Fluids, 48:7 (2005), 747-774
  39. Vuorinen V., Larmi M., Schlatter P., Fuchs L., Boersma B. J., "A low-dissipative, scale-slective discretization scheme for the Navier-Stokes equations", Comput. Fluids, 70 (2012), 195-205
  40. Lim R., Sheen D., "Nonconforming finite element method applied to the driven cavity flow", Comm. Comput. Phys., 21:4 (2017), 1012-1038

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies