Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment

Cover Page


Cite item

Full Text

Abstract

The problem of assessing the strength and resource of critical engineering objects is considered. The operating conditions of objects are characterized by high-temperature non-stationary thermomechanical effects, which lead to degradation of the initial strength properties of structural materials by the mechanism of long-term strength.

From the standpoint of the mechanics of a damaged medium, a mathematical model has been developed that describes the kinetics of the stress-strain state and the accumulation of damage during material degradation by the mechanism of long-term strength under conditions of a complex multiaxial stress state.

An experimental-theoretical method for finding the material parameters and scalar functions of the constitutive relations of the mechanics of a damaged medium based on the results of specially set experiments on laboratory samples is proposed.

The results of experimental studies and numerical modeling of the short-term high-temperature creep of VT6 titanium alloy under uniaxial and multiaxial stress states are presented. The numerical results are compared with the data of field experiments. Particular attention is paid to the issues of modeling the process of unsteady creep for complex deformation modes, accompanied by the rotation of the main areas of stress tensors, deformations and creep deformations, taking into account the effect of an aggressive environment, which is simulated by preliminary hydrogenation of laboratory samples to various hydrogen concentrations by mass.

It is shown that the developed version of the constitutive relations of the mechanics of a damaged medium allows, with sufficient accuracy for engineering calculations, to describe unsteady creep and long-term strength of structural alloys under multiaxial stress states, taking into account the effect of an aggressive medium (hydrogen corrosion).

About the authors

Leonid A. Igumnov

Samara State Technical University;
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Email: igumnov@mech.unn.ru
ORCID iD: 0000-0003-3035-0119
SPIN-code: 1722-9667
Scopus Author ID: 14121358200
ResearcherId: E-3487-2014
http://www.mathnet.ru/person143791

Dr. Phys. & Math. Sci., Professor; Leading Researcher; Dept. of Applied Mathematics and Computer Science; Chief Researcher; Lab. of Simulation of Physical and Mechanical Processes

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation; 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022, Russian Federation

Ivan A. Volkov

Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod;
Volga State University of Water Transport

Email: pmptmvgavt@yandex.ru
ORCID iD: 0000-0003-1176-4906
SPIN-code: 9835-9970
Scopus Author ID: 57224669962
ResearcherId: J-2846-2017
http://www.mathnet.ru/rus/person160357

Dr. Phys. & Math. Sci., Professor; Chief Researcher; Lab. of Physical and Mechanical Testing of Materials; Head of Dept.; Dept of Hoisting-and-transport Machines and Machine Repair

23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022, Russian Federation; 5, Nesterova str., Nizhny Novgorod, 603600, Russian Federation

Dmitriy A. Kazakov

Samara State Technical University; Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Email: kazakov@mech.unn.ru
ORCID iD: 0000-0002-9316-4105
SPIN-code: 6225-3268
Scopus Author ID: 7007110190
ResearcherId: J-4288-2017
http://www.mathnet.ru/rus/person175252

Cand. Techn. Sci.; Researcher; Dept. of Applied Mathematics and Computer Science; Researcher; Lab. of Physical and Mechanical Testing of Materials

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation; 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022, Russian Federation

Denis N. Shishulin

Samara State Technical University; Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Email: shishulindn@gmail.com
ORCID iD: 0000-0002-6527-557X
Scopus Author ID: 54384303100
http://www.mathnet.ru/rus/person175253

Cand. Techn. Sci.; Researcher; Dept. of Applied Mathematics and Computer Science; Researcher; Lab. of Physical and Mechanical Testing of Materials

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation; 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022, Russian Federation

Ivan A. Modin

Samara State Technical University; Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: mianet@mail.ru
ORCID iD: 0000-0002-3561-4606
SPIN-code: 4839-8129
Scopus Author ID: 57192279101
ResearcherId: E-9088-2019
http://www.mathnet.ru/rus/person138504

Cand. Techn. Sci.; Researcher; Dept. of Applied Mathematics and Computer Science; Researcher; Lab. of Simulation of Physical and Mechanical Processes

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation; 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022, Russian Federation

References

  1. Volkov I. A., Korotkikh Yu. G. Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State of Damaged Viscoelastoplastic Media]. Moscow, Fizmatlit, 2008, 424 pp. (In Russian)
  2. Collins J. A. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention. New York, John Wiley and Sons, 1981.
  3. Dul'nev R. A., Kotov P. I. Termicheskaia ustalost' metallov [Thermal Fatigue of Metals]. Moscow, Mashinostroenie, 1980, 200 pp. (In Russian)
  4. Kazantsev A. G. Interaction of low-cycle fatigue and creep in nonisothermal loading, Strength Mater., 1985, vol. 17, no. 5, pp. 610–617. https://doi.org/10.1007/BF01524181
  5. Rabotnov Yu. N. Creep of Structural Members, North-Holland Series in Applied Mathematics and Mechanics. Amsterdam, North-Holland, 1969, ix+822 pp.
  6. Gokhfeld D. A., Sadakov O. S. Plastichnost' i polzuchest' elementov konstruktsii pri povtornykh nagruzheniiakh [Plasticity and Creep of Structural Elements under Repeated Loading]. Moscow, Mashinostroenie, 1984, 256 pp. (In Russian)
  7. Degtyarev V. P. Plastichnost' i polzuchest' mashinostroitel’nykh konstruktsii [Plasticity and Creep of Mechanical-Engineering Structures]. Moscow, Mashinostroenie, 1967, 130 pp. (In Russian)
  8. Malinin N. N. Prikladnaia teoriia plastichnosti i polzuchesti [The Applied Theory of Plasticity and Creep]. Moscow, Mashinostroenie, 1968, 400 pp. (In Russian)
  9. Lokoshchenko A. M. Creep and Long-Term Strength of Metals. Boca, Raton, CRC Press, 2018, xviii+545 pp. https://doi.org/10.1201/b22242
  10. Boyle J. T., Spence J. Stress Analysis for Creep. London, Butterworth, 1980, viii+283 pp. https://doi.org/10.1016/C2013-0-00873-0
  11. Volkov I. A., Igumnov L. A., Korotkikh Yu. G. Prikladnaia teoriia viazkoplastichnosti [Applied Theory of Viscoplasticity]. Nizhny Novgorod, Nizhny Novgorod State Univ., 2015, 318 pp. (In Russian)
  12. Bondar' V. S. Neuprugost'. Varianty teorii [Inelasticity. Theory Variants]. Moscow, Fizmatlit, 2004, 144 pp. (In Russian)
  13. Perzyna P. Fundamental problems in viscoplasticity, Advances in Applied Mechanics, 1966, vol. 9, pp. 243–377. https://doi.org/10.1016/S0065-2156(08)70009-7.
  14. Shevchenko Iu. N., Terekhov R. G. Fizicheskie uravneniia termoviazkoplastichnosti [Physical Equations of Thermoviscoplasticity]. Kiev, Nauk. dumka, 1982, 240 pp. (In Russian)
  15. Chaboche J. L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, 1989, vol. 5, no. 3, pp. 247–302. https://doi.org/10.1016/0749-6419(89)90015-6
  16. Malinin N. N., Khadjinsky G. M. Theory of creep with anisotropic hardening, Int. J. Mech. Sci., 1972, vol. 14, no. 4, pp. 235–246. https://doi.org/10.1016/0020-7403(72)90065-3
  17. Miller A. An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I—Equations development and analytical procedures, J. Eng. Mater. Technol., 1976, vol. 98, no. 2, pp. 97–105. https://doi.org/10.1115/1.3443367
  18. Krieg R. D., Swearengen J. C., Jones W. B. A physically-based internal variable model for rate-dependent plasticity, In: Unified Constitutive Equations for Creep and Plasticity. Dordrecht, Springer, 1978, pp. 245–271. https://doi.org/10.1007/978-94-009-3439-9_5
  19. Ohashi Y., Ohno N., Kawai M. Evaluation of creep constitutive equations for type 304 stainless steel under repeated multiaxial loading, J. Eng. Mater. Technol., 1982, vol. 104, no. 3, pp. 155–164. https://doi.org/10.1115/1.3225059
  20. Volkov I. A., Igumnov L. A. Vvedenie v kontinual’nuiu mekhaniku povrezhdennoi sredy [Introduction to the Continuum Mechanics of a Damaged Medium]. Moscow, Fizmatlit, 2017, 304 pp. (In Russian)
  21. Volkov I. A., Igumnov L. A., Kazakov D. A., Mironov A. A., Tarasov I. S., Shishulin D. N., Smetanin I. V. A damaged medium model for describing the processof long-term strength of structural materials (metals and their alloys), Problems of Strength and Plasticity, 2017, vol. 79, no. 3, pp. 285–300 (In Russian). https://doi.org/10.32326/1814-9146-2017-79-3-285-300
  22. Samarin Yu. P. Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoystvami [Equations of State of Materials with Complex Rheological Properties]. Kuibyshev, Kuibyshev State Univ., 1979, 84 pp. (In Russian)
  23. Radchenko V. P., Samarin Yu. P., Khrenov S. M. Determining equations for the materials in the presence of three stages of creep, Dokl. Akad. Nauk SSSR, 1986, vol. 288, no. 3, pp. 571–574 (In Russian).
  24. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Destruction of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 263 pp. (In Russian)
  25. Kazakov D. A., Kapustin S. A., Korotkikh Yu. G. Modelirovanie protsessov deformirovaniia i razrusheniia materialov i konstruktsii [Modeling the Processes of Deformation and Destruction of Materials and Structures]. Nizhny Novgorod, Nizhny Novgorod State Univ., 1994, 226 pp. (In Russian)
  26. Igumnov L. A., Kazakov D. A., Shishulin D. N., Modin I. A., Zhegalov D. V. Experimental studies of high-temperature creep of titanium alloy VT6 under conditions of a complex stress state under the influence of an aggressive medium, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 2, pp. 286–302 (In Russian). https://doi.org/10.14498/vsgtu1850
  27. Balandin V. V., Kochetkov A. V., Krylov S. V., Modin I. A. Numerical and experimental study of the penetration of a package of woven metal grid by a steel ball, J. Phys.: Conf. Ser., 2019, vol. 1214, 012004. https://doi.org/10.1088/1742-6596/1214/1/012004
  28. Igumnov L. A., Vlasov S. Y., Kazakov D. A., Zhegalov D. V., Modin I. A. Experimental studies of elastic-plastic deformation of structural materials under conditions of triaxial loading, In: Multiscale Solid Mechanics, Advanced Structured Materials, 141. Cham, Springer, 2021, pp. 203–212. https://doi.org/10.1007/978-3-030-54928-2_16
  29. Kochetkov A. V., Leont'ev N. V., Modin I. A., Savikhin A. O. Study of the stress-strain and strength properties of the metal woven grids, Vestn. Tomsk. Gosud. Univ. Matem. Mekh. [Tomsk State University Journal of Mathematics and Mechanics], 2018, no. 52, pp. 53–62 (In Russian). https://doi.org/10.17223/19988621/52/6
  30. Modin I. A., Kochetkov A. V., Leontiev N. V. Numerical simulation of quasistatic and dynamic compression of a granular layer, AIP Conference Proceedings, 2019, vol. 2116, no. 1, 270003. https://doi.org/10.1063/1.5114277

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies