Том 20, № 2 (2016)
- Год: 2016
- Статей: 12
- URL: https://journals.eco-vector.com/1991-8615/issue/view/1220
К 85-летию со дня рождения профессора Д. Д. Ивлева
Аннотация
6 сентября 2015 года Дюису Даниловичу Ивлеву исполнилось бы 85 лет. В настоящей статье приводятся некоторые сведения, не известные широкой научной публике, и список всех его основных работ.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):197-219



Нелокальная задача для нагруженного уравнения смешанного типа с интегральным оператором
Аннотация
Поставлена и исследована нелокальная задача для нагруженного уравнения второго порядка эллиптико-гиперболического типа с интегральным оператором в двусвязной области. Единственность решения доказывается с помощью принципа экстремума для уравнений смешанного типа. Для использования принципа экстремума было показано, что нагруженная часть уравнения тождественно равна нулю. Существование решения задачи доказывается методом интегральных уравнений, при этом используются теория сингулярных интегральных уравнений и интегральные уравнения Фредгольма второго рода.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):220-240



Задача Коши для уравнения гиперболического типа порядка $n$ общего вида с некратными характеристиками
Аннотация
Для дифференциального уравнения гиперболического типа порядка $n$ с некратными характеристиками рассмотрена задача Коши. Приводятся полученные авторами ранее решения задачи Коши для гиперболических уравнений третьего и четвертого порядков с некратными характеристиками в явном виде, аналогичном формуле Даламбера. Получено решение задачи Коши для уравнения гиперболического типа порядка $n$ общего вида. Найденное решение также является аналогом формулы Даламбера. Сформулирована теорема о существовании и единственности регулярного решения задачи Коши для гиперболического уравнения порядка $n$ общего вида с некратными характеристиками.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):241-248



Задача о продольных колебаниях упруго закрепленного нагруженного стержня
Аннотация
Рассматриваются одномерные продольные колебания толстого короткого стержня, закреплённого на концах при помощи сосредоточенных масс и пружин. В качестве математической модели используется начально-краевая задача с динамическими краевыми условиями для гиперболического уравнения четвёртого порядка. Выбор именно этой модели обусловлен необходимостью учитывать эффекты деформации стержня в поперечном направлении, пренебрежение которыми, как показано Рэлеем, приводит к ошибке, что подтверждено современной нелокальной концепцией изучения колебаний твёрдых тел. Доказано существование ортогональной с нагрузкой системы собственных функций исследуемой задачи и получено их представление. Установленные свойства собственных функций позволили применить метод разделения переменных и доказать существование единственного решения поставленной задачи
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):249-258



Об одной нелокальной задаче для уравнения Эйлера-Дарбу
Аннотация
Для обобщенного уравнения Эйлера-Дарбу в области, представляющей собой первый квадрант, поставлена краевая задача со смещением, в которой, в отличие от предыдущих постановок, задаются два условия: одно связывает интегралы, а другое - производные дробного порядка от значений искомого решения в граничных точках. На линии сингулярности коэффициентов уравнения заданы условия сопряжения, непрерывные относительно решения и его нормальной производной. За основу решения поставленной задачи авторы взяли полученное ими ранее решение задачи Коши специального класса, которое за счет интегрального представления одной из заданных функций приобрело простой вид как для положительных, так и для отрицательных значений параметра уравнения Эйлера-Дарбу. Поставленная авторами нелокальная задача свелась к системе интегральных уравнений Вольтерры с несверточными операторами, единственное решение которой получено в явном виде в соответствующем классе функций. Это позволяет утверждать, что решение нелокальной задачи единственно. Факт существования решения доказывается непосредственной проверкой. Проведенные авторами рассуждения позволили получить решение поставленной нелокальной задачи в явном виде как для положительных, так и для отрицательных значений параметра уравнения Эйлера-Дарбу.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):259-275



Задача с нелокальным интегральным условием второго рода для одномерного гиперболического уравнения
Аннотация
Рассмотрена задача с нелокальным интегральным условием второго рода для одномерного гиперболического уравнения в прямоугольной области. Доказаны существование и единственность обобщенного решения задачи. Для доказательства существования и единственности обобщенного решения поставленной задачи предложен новый метод исследования задач с интегральными условиями. Предложенный в работе метод позволил отказаться от некоторых условий на входные данные, обеспечивающих разрешимость поставленной задачи, а именно от требования обратимости оператора, порождаемого нелокальным условием. Суть данного метода состоит в эквивалентной замене заданного нелокального условия другим, также нелокальным, но содержащим в качестве внеинтегрального члена значения выводящей производной неизвестной функции на боковой границе. Установленная эквивалентность условий позволила перейти к задаче, для доказательства однозначной разрешимости которой применен метод компактности, зарекомендовавший себя как эффективный метод исследования разрешимости начальнокраевых задач и задач с нелокальными условиями. С помощью метода Галеркина построена последовательность приближенных решений. Для продолжения исследования разрешимости задачи получены априорные оценки решения в пространстве Соболева. С помощью выведенных оценок доказано утверждение о возможности выделить из построенной методом Галеркина последовательности приближенных решений подпоследовательность, которая слабо сходится к решению задачи. В процессе доказательства разрешимости поставленной задачи обнаружилась интересная связь нелокальных интегральных условий с динамическими условиями.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):276-289



Экспериментальное исследование кинетики остаточных напряжений в упрочненных полых цилиндрических образцах из сплава Д16Т при осевом растяжении в условиях ползучести
Аннотация
Экспериментально исследовано влияние растягивающей осевой нагрузки на релаксацию остаточных напряжений в поверхностно упрочненных полых цилиндрических образцах из алюминиевого сплава Д16Т при температуре 125 ℃. Упрочнение выполнено пневмодробеструйной обработкой поверхности дробью. Описаны установки для испытаний и методика эксперимента. Получены экспериментальные кривые ползучести упрочненных образцов при осевых нагрузках 353, 385, 406.2 и 420 МПа при длительности испытаний 100-160 часов. Методом колец и полосок определены поля осевых и окружных остаточных напряжений после процесса упрочнения и после ползучести при заданных температурносиловых условиях нагружения. Установлено, что по сравнению со случаем термоэкспозиции (температурная выдержка без нагрузки) под действием растягивающей нагрузки $\bar \sigma$ происходит существенное качественное и количественное изменение остаточных напряжений. Термоэкспозиция практически не влияет на процесс релаксации остаточных напряжений, а приложение нагрузки привело к существенной релаксации остаточных напряжений и изменению их характера распределения: окружное и осевое остаточные напряжения эволюционируют от сжимающих до растягивающих при росте осевой растягивающей нагрузки. Происходит изменение глубины залегания остаточных напряжений с увеличением растягивающей нагрузки с величины 600 мкм в исходном состоянии после пневмодробеструйной обработки до величины 250-300 мкм после ползучести при заданных нагрузках. Отмечено, что с точки зрения инженерных приложений выявленные закономерности изменения остаточных напряжений в упрочненных образцах из сплава Д16Т необходимо учитывать при прогнозировании характеристик сопротивления усталости поверхностно упрочненных деталей из этого сплава, работающих при повышенных температурах.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):290-305



Метод нелинейных граничных интегральных уравнений для решения квазистатической контактной задачи о взаимодействии упругих тел при наличии кулонова трения
Аннотация
Рассмотрена пространственная квазистатическая контактная задача о взаимодействии двух линейно-упругих тел с учетом кулонова трения между ними. В граничных условиях задачи на каждом шаге дискретного процесса нагружения были приняты упрощения, основанные на модификации закона трения Кулона. Эта модификация состояла во введении в соотношения, выражающие закон трения Кулона, запаздывания контактных давлений, ограничивающих касательные контактные напряжения. В рассмотренной постановке задача бала сведена к последовательному решению серии однотипных систем нелинейных интегральных уравнений, описывающих взаимодействие тел на каждом из шагов нагружения. Для получения контактных напряжений на каждом шаге нагружения использован метод приближённого решения системы интегральных уравнений этого шага, который заключается в регуляризации этой системы уравнений, дискретизации регуляризированной системы и применении сходящегося итерационного процесса для получения решения дискретизированной системы. Предложенным методом получено численное решение контактной задачи о вдавливании упругого шара в упругое полупространство при возрастании и последующем убывании нормальной сжимающей силы.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):306-327



Численный метод определения параметров модели ползучести разупрочняющегося материала
Аннотация
Тенденции к уменьшению массы машин при улучшении их качества, а также стремление к наиболее полному использованию механических свойств материалов требуют постоянного совершенствования и развития известных методов расчета и анализа напряженно-деформированного состояния материалов в условиях ползучести. В статье рассматривается новый численный метод оценки параметров математической модели ползучести разупрочняющегося материала на основе экспериментальных диаграмм, построенных по результатам испытаний при различных напряжениях. В основе метода лежит обобщенная регрессионная модель, построенная на основе разностных уравнений, описывающих диаграммы ползучести. Полученные соотношения между коэффициентами разностного уравнения и параметрами деформации ползучести позволяют свести задачу параметрической идентификации к итерационной процедуре среднеквадратичного оценивания коэффициентов, линейной на каждом шаге итерации обобщенной регрессионной модели. Проведена апробация разработанного численного метода на пяти экспериментальных кривых ползучести алюминиевого сплава, подтверждающая достоверность полученных соотношений и эффективность численного метода.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):328-341



Об одном методе решения нестационарных задач теплопроводности с несимметричными граничными условиями
Аннотация
С использованием дополнительных граничных условий и дополнительной искомой функции в интегральном методе теплового баланса, получено приближенное аналитическое решение нестационарной задачи теплопроводности для бесконечной пластины при несимметричных граничных условиях первого рода. Решение имеет простой вид тригонометрического полинома с коэффициентами, экспоненциально стабилизирующимися во времени. С увеличением числа членов полинома получаемое решение приближается к точному. Введение зависящей от времени дополнительной искомой функции, задаваемой в одной из граничных точек, позволяет свести решение дифференциального уравнения в частных производных к интегрированию обыкновенного дифференциального уравнения. Дополнительные граничные условия находятся в таком виде, чтобы их выполнение искомым решением было эквивалентно выполнению исходного дифференциального уравнения в граничных точках. Показано, что выполнение уравнения лишь в граничных точках приводит к его выполнению и внутри области, минуя интегрирование по пространственной переменной, заменяемого выполнением искомым решением интеграла теплового баланса (осредненного дифференциального уравнения в частных производных). Отсутствие необходимости интегрирования исходного уравнения по пространственной переменной позволяет применять данный метод к решению нелинейных краевых задач с переменными начальными условиями и физическими свойствами среды и др.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):342-353



Численное интегрирование краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры с использованием итерационных процедур
Аннотация
Предложена итерационная процедура численного интегрирования краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры. Исходное дифференциальное уравнение алгебраическими преобразованиями приведено к линейному неоднородному дифференциальному уравнению второго порядка с постоянными коэффициентами, правая часть которого представлена в виде линейной комбинации производных искомой функции вплоть до второй степени и исследуемого дифференциального уравнения произвольной структуры. При построении разностной краевой задачи были использованы многочлены Тейлора, что позволило отказаться от аппроксимации производных конечными разностями. Степень многочленов Тейлора может быть выбрана равной любому натуральному числу, большему или равному двум. Построенное линейное неоднородное дифференциальное уравнение имеет три произвольных коэффициента. Показано, что коэффициент при исходном дифференциальном уравнении произвольной структуры в правой части полученного неоднородного линейного дифференциального уравнения связан со сходимостью итерационной процедуры, а коэффициенты при производных искомой функции влияют на устойчивость разностной краевой задачи на каждой итерации. Теоретически установлены значения коэффициентов при производных искомой функции, обеспечивающие устойчивость разностной краевой задачи независимо от вида исходного уравнения. При выполнении численного эксперимента выявлено, что коэффициент, обеспечивающий сходимость итерационной процедуры, зависит от вида исходного дифференциального уравнения. Численный эксперимент показал, что увеличение степени используемого многочлена Тейлора приводит к уменьшению погрешности между точным и найденным численным решениями.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):354-365



О волновой динамике повреждаемых оболочек, взаимодействующих с объемом кавитирующей жидкости
Аннотация
Изучены особенности распространения ударных волн в системе, состоящей из деформируемой среды (оболочек) с повреждениями и двухфазной жидкости с пузырьками газа или пара. При этом моделируются нелинейные процессы взаимодействия сред с учетом фазовых превращений в жидкости и кинетики повреждаемости деформируемой среды. Разрушение деформируемой среды рассматривается как эволюция микроповреждений - пор сферической формы, принимаемых по аналогии с кавитирующей жидкостью в виде пузырьков газа, объединение которых в процессе вязкопластического течения ведет к образованию макротрещины. Сформулирована нелинейная краевая задача динамики многофазной среды, включающей в себя уравнения взаимодействия фаз и фазовых превращений. Решение задачи строится на основе методов расщепления (разложения решения по процессам), конечных разностей и конечных элементов. Представлены результаты, представляющие интерес для практических приложений.
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 2016;20(2):366-386


