State-of-the-art quartz and rubidium oscillators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Rubidium or precision quartz oscillators are most often used as reference frequency sources in telecommunications equipment. Each of these types of generators has its own advantages and disadvantages, but their stability may be quite comparable in the end.

Full Text

Restricted Access

About the authors

Yu. Ivanov

АО «Морион»

Author for correspondence.
Email: Ivanov-UA@morion.com.ru

старший инженер-разработчик

Russian Federation

References

  1. Kotyukov A., Ivanov Y., Nikonov A. Precise Frequency Sources Meeting the 5G Holdover Time Interval Error Requirement // Microwave journal. May 2018.
  2. Иванов Ю.А. О подходе к оценке временной ошибки при применении прецизионных кварцевых генераторов (КГ) в новейших телекоммуникационных системах // Доклады VIII международного симпозиума «Метрология времени и пространства». Менделеево, ФГУП «ВНИИФТРИ». 2017. С. 30–35.
  3. Иванов Ю.А., Никонов А.Г., Котюков А.В. Использование прецизионных генераторов в аппаратуре стандарта 5G // Современная Электроника. 2019. №3. С. 52–55.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency dependence on temperature for different types of quartz oscillators

Download (21KB)
3. Fig. 2. Typical time dependence of frequency for quartz oscillators

Download (8KB)
4. Fig. 3. Dependence of typical time of output of precision generators to different standards on daily aging on the time of being in the switched-off state

Download (13KB)
5. Fig. 4. Effect of power off on the frequency of quartz oscillators

Download (10KB)
6. Fig. 5. Typical frequency-time dependence for rubidium oscillators

Download (16KB)
7. Fig. 6. Allan deviation for a quartz oscillator

Download (11KB)
8. Fig. 7. Relative power spectral density for an ultra-precision quartz oscillator

Download (10KB)
9. Fig. 8. Frequency drift (left) and the resulting time error (right)

Download (22KB)
10. Fig. 9. Influence of the temperature profile on the time error

Download (23KB)
11. Fig. 10. Methodology for estimating time error

Download (38KB)
12. Fig. 11. Time error of rubidium oscillators at constant temperature

Download (21KB)
13. Fig. 12. Time error of rubidium oscillators under conditions of small temperature changes

Download (40KB)
14. Fig. 13. Compensation of quartz oscillators aging

Download (13KB)
15. Fig. 14. Frequency drift (left) and induced time error (right) with linear aging compensation taken into account

Download (24KB)
16. Fig. 15. Temporal error for four different generators

Download (43KB)

Copyright (c) 2024 Ivanov Y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies