Double-gap klystron photonic crystal resonator with additional planar resonant elements

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of investigation of the main electrodynamic parameters of a double-gap photonic crystal resonator will come to use in the development of resonator systems for klystron-type devices operating as amplifiers and generators in radar, telecommunications, and communication facilities.

Full Text

Restricted Access

About the authors

A. Gnusarev

Саратовский государственный технический университет им. Ю. А. Гагарина

Author for correspondence.
Email: 19953@bk.ru

аспирант кафедры «Электронные приборы и устройства»

Russian Federation

A. Miroshnichenko

Саратовский государственный технический университет им. Ю. А. Гагарина

Email: alexm2005@list.ru

д. т. н., доцент, заведующий кафедрой «Электронные приборы и устройства»

Russian Federation

V. Tsarev

Саратовский государственный технический университет им. Ю. А. Гагарина

Email: tsarev_va@mail.ru

д. т. н., профессор кафедры «Электронные приборы и устройства»

Russian Federation

N. Akafyeva

Саратовский государственный технический университет им. Ю. А. Гагарина

Email: akafieva_na@mail.ru

к. т. н., доцент кафедры «Электронные приборы и устройства»

Russian Federation

References

  1. Щербаков С. В. Развитие СВЧ электроники в рамках реализации государственных программ // Материалы VI Всерос. науч.-техн. конф. «Электроника и микроэлектроника СВЧ», СПб., 29 мая – 1 июня 2017. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2017. С. 15–23. URL: https://mwelectronics.etu.ru/assets/files/2017/01.pdf (дата обращения 26.05.2021).
  2. Bearzatto C., Bres M., Faillon G. Advantages of Multiple Beam Klystrons // Vakuum elektronik und Displays: Vortrage der ITG Fachtagagung. Garmisch-Partenkirchen, 4–5 May 1992. Garmisch-Partenkirchen: ITG, 1992. РР. 4–32.
  3. Korolyov A.N., Gelvich E. A., Zhary Y. V., Zakurdayev A. D., Poognin V. I. Multiple-beam klystron amplifiers: Performance parameters and development trends // IEEE Transactions on Plasma Science. 2004. Vol. 32. no. 3. РР. 1109–1118. doi: 10.1109/TPS.2004.828807.
  4. Nusinovich G. S., Levush B., Abe D. K. A review of the development of multiple-beam klystrons and TWTs. Washington: Naval Research Laboratory, 2003. 42 p.
  5. Ding Y., Shen B., Shi S., Cao J. S-band multibeam klystron with bandwidth of 10% // IEEE Transactions Electron Devices. 2005. Vol. 52, no. 5. РР. 889–894. doi: 10.1109/TED.2005.845796.
  6. Kotov A. S., Gelvich E. A., Zakurdayev А. D. Small-Size Complex Microwave Devices (CMD) for Onboard Applications // IEEE Transactions on Electron Devices. 2007. Vol. 54. No. 5. РР. 1049–1053. doi: 10.1109/TED.2007.893196.
  7. Smirnov A. V., Newsham D., Yu D. PBG Cavities for Single-Beam and Multi-Beam Electron Devices // Proc. of Particle Accelerator Conf. Portland, Oregon, 12–16 May 2003. Portland, Oregon: IEEE, 2003. РР. 1153–1155. doi: 10.1109/PAC.2003.1289636.
  8. Xu Y., Seviour R. Design of Photonic Crystal Klystrons // Proc. of the 1st Intern. Particle Accelerator Conf. (IPAC 2010), Kyoto, 23–28 May 2010. РР. 4002–4004.
  9. Singh A., Jain P. K. FDTD Analysis of the Dispersion Characteristics of the Metal PBG Structures // Progress in Electromagnetics Research B. 2012. Vol. 39. РР. 71–88. doi: 10.2528/PIERB11120601.
  10. Xie Chenglong, Chen Chun-Ping. Anada Tetsuo 2D microwave metallic photonic crystal point-defect-cavity resonator // Microwave and Optical Technology Lett. 2017. Vol. 59, no. 10. РР. 2547–2551. doi: 10.1002/mop.30767.
  11. Chen Chun-Ping, Xie Chenglong, Anada Tetsuo, Zhang Zejun. Simulation and Measurement of Properties of Metallic Photonic Crystal Point-Defect-Cavities with a Centrally-Loaded Rod // IEICE Transactions on Electronics. 2018. Vol. E101-C. No. 1. РР. 91–95. doi: 10.1587/transele. E101.C.91.
  12. Masullo M. R., Andreone A., Gennaro Di E., Albanese S., Francomacaro F., Panniello M., Vaccaro V. G., Lamura G. Study of Hybrid Photonic Band Gap Resonators for Particle Accelerators // Microwave and Optical Technology Lett. 2006. Vol. 48. № 12. РР. 2486–2491. doi: 10.1002/mop.22016.
  13. Ningfeng Bai, Xiaohan Sun. Slow Wave Structures with Composite Defect Electromagnetic Band Gap Structure // IVEC 2008.
  14. Ahmed Rhbanou, Mohamed Sabbane, Seddik Bri. Design of Dual-Mode Substrate Integrated Waveguide Band-Pass Filters // Circuits and Systems. 2015. No. 6. РР. 257–267.
  15. Dian Widi Astuti, Rizki Ramadhan Putra, Muslim, Mudrik Alaydrus. Substrate integrated waveguide bandpass filter for short range device application using rectangular open loop resonator // International Journal of Electrical and Computer Engineering (IJECE). Vol. 11. No. 5. October 2021. PP. 3747–3756.
  16. Astuti D. W., Alaydrus M. A Bandpass Filter Based on Rectangular Open Loop Resonators at 2.45 GHz // IEEE International Conference on Instrument, Communications, Information Technology and Biomedical Engineering. 2013. No. 1. PP. 147–151.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DFRC construction: a-resonator construction; B-RPR construction

Download (40KB)
3. Fig. 2. The studied resonator models: a – a two-gap resonator without a photonic crystal lattice; b – DFCR with a standard photonic crystal lattice; c - DFCR with an increased diameter of the rods of the first layer of the photonic crystal lattice

Download (35KB)
4. Fig. 3. Frequency distribution of the resonator in the range from 10 to 40 GHz for three design options

Download (38KB)
5. Fig. 4. Dependences of the frequency, Q-factor (a) and characteristic resistance (b) of the resonator on changes in the diameter of the rods of the first layer of the photonic crystal lattice: 1 – π-mode; 2 – 2π-mode. Solid line – frequency; dotted line – quality factor

Download (20KB)
6. Fig. 5. Dependence of frequency, intrinsic Q-factor (a) and characteristic resistance (b) on parameter A: 1 – π-mode; 2 – 2π-mode. Solid line – frequency; dotted line – intrinsic quality

Download (22KB)
7. Fig. 6. Dependence of the frequency, intrinsic Q–factor (a) and characteristic resistance (b) of the resonator on the parameter G: 1 - π-mode; 2 – 2π-mode. Solid line – frequency; dotted line – intrinsic quality

Download (25KB)
8. Fig. 7. Dependence of frequency, intrinsic Q-factor (a), characteristic resistance (b) on the parameter F of the PRP: 1 – π-mode; 2 – 2π-mode. The solid line is the frequency, the dotted line is the intrinsic quality

Download (22KB)
9. Fig. 8. The dependence of frequency and intrinsic Q-factor (a), characteristic resistance (b) on the parameter W PRP: 1 – π-mode; 2 – 2π-mode. Solid line – frequency; dotted line – intrinsic quality

Download (22KB)
10. Fig. 1. Table.

Download (4KB)
11. Fig. 2. Table.

Download (4KB)

Copyright (c) 2023 Gnusarev A., Miroshnichenko A., Tsarev V., Akafyeva N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies