Supercapacitors. Service life and energy density increasing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article studies aging processes in supercapacitor silicon-carbon electrodes, which make it possible to understand degradation mechanisms, as well as determine performance limitations.

Texto integral

Acesso é fechado

Sobre autores

I. Bogush

Южный федеральный университет

Autor responsável pela correspondência
Email: inlys@sfedu.ru

Институт нанотехнологий, электроники и приборостроения, кафедра техносферной безопасности и химии, аспирант

Rússia

N. Plugotarenko

Южный федеральный университет

Email: plugotarenko@mail.ru

к. т. н., Институт нанотехнологий, электроники и приборостроения, кафедра техносферной безопасности и химии, заведующий кафедрой

Rússia

T. Myasoedova

Южный федеральный университет

Email: tnmyasoedova@sfedu.ru

к. т. н., Институт нанотехнологий, электроники и приборостроения, ведущий научный сотрудник

Rússia

Bibliografia

  1. Liu G., Ma L., Liu Q. M. The Preparation of Co3O4@MnO2 Hierarchical Nano-sheets for High-output Potential Supercapacitors // Electrochim. Acta 2020. No. 364. 137265.
  2. Xiang Chen, Chuan Jing, Xin Fu, Man Shen, Tong Cao, Wangchen Huo, Xiaoying Liu, Hong-Chang Yao, Yuxin Zhang, Ke Xin Yao. In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor // Applied Surface Science. 2020. V. 503. 144123.
  3. Muhammad Sufyan Javed, Syed Shoaib Ahmad Shah, Shahid Hussain, Shaozao Tan, Wenjie Mai. Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor // Chemical Engineering Journal. 2020. V. 382. 122814.
  4. Loreto Suárez, Violeta Barranco, Teresa A. Centeno. Impact of carbon pores size on ionic liquid based-supercapacitor performance // Journal of Colloid and Interface Science. 2021. V. 588. PP. 705–712.
  5. Yi T. F., Mei J., Guan B. L., Cui P., Luo S. H., Xie Y., Liu Y. G. Construction of Spherical NiO@MnO2 with Core-shell Structure Obtained by Depositing MnO2 Nanoparticles on NiO Nanosheets for High-performance Supercapacitor // Ceram. Int. 2020. V. 46. РP. 421–429.
  6. Zhang M. W., Liu W. W., Liang R. L., Tjandra R., Yu A. P. Graphene Quantum Dot Induced Tunable Growth of Nanostructured MnCo2O4.5 Composites for High-performance Supercapacitors // Sustain. Energy Fuels 2019. V. 3. РP. 2499–2508.
  7. Zhang X. Y., Li Z., Yu Z. Y., Wei L., Guo X. Mesoporous NiMoO4 Microspheres Decorated by Ag Quantum Dots as Cathode Material for Asymmetric Supercapacitors: Enhanced Interfacial Conductivity and Capacitive Storage // Appl. Surf. Sci. 2020. V. 505. 144513.
  8. Zhu D., Sun X., Yu J., Liu Q., Liu J. Y., Chen R. R., Zhang H. S., Li R. M., Yu J., Wang J. Rationally Designed CuCo2O4@Ni(OH)2 with 3D Hierarchical Core-shell Structure for Flexible Energy Storage // J. Colloid Interface Sci. 2019. V. 557. РP. 76–83.
  9. Liu Q., Hong X. D., Zhang X., Wang W., Guo W. X., Liu X. Y., Ye M. D. Hierarchically Structured Co9S8@NiCo2O4 Nanobrushes for High-performance Flexible Asymmetric Supercapacitors // Chem. Eng. J. 2019. V. 356. РP. 985–993.
  10. Chen H., Hu H. M., Han F., Liu J. D., Zhang Y. R., Zheng Y. H. CoMoO4/bamboo Charcoal Hybrid Material for High-energy-density and High Cycling Stability Supercapacitors // Dalton Trans. 2020. V. 49. 10799–10807.
  11. Masayuki Itagaki, Yasunari Hatada, Isao Shitanda, Kunihiro Watanabe. Complex impedance spectra of porous electrode with fractal structure. Electrochimica Acta. 2010. V. 55. PP. 6255–6262.
  12. Noya Loew, Tomohiro Tanaka, Hikari Watanabe, Isao Shitanda, Masayuki Itagaki. Electrochemical impedance simulation of porous electrodes with variously shaped pores using 3-dimensional finite element method // Electrochimica Acta. 2023. V. 440. 141723.
  13. El Hassane Lahrar, Patrice Simon, Céline Merlet. Carbon–carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance // J. Chem. Phys. 2021. V. 155 (18): 184703.
  14. Elhosiny Ali H., Ganesh V., Haritha L., Aboraia A. M., Hegazy H. H., Butova V., Soldatov A. V., Algarni H. , Guda A., Zahran H. Y., Khairy Y., Yahia I. S. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films, Optics & Laser Technology. V. 135. 2021. 106691.
  15. Богуш И. Ю., Плуготаренко Н. К., Мясоедова Т. Н. Исследование функциональных характеристик мезопористых электродов суперконденсаторов на основе кремний-углеродных пленок // Журнал технической физики. 2022. Т. 92, № 12. С. 1833–1843.
  16. Mikhailоva T. S., Grigоryеv M. N., Myasоеdоva T. N. Thе twо-stagе еlесtrосhеmiсal dеpоsitiоn оf a manganеsе-dоpеd siliсоn-сarbоn film оntо thе siliсоn (100) substratе [Tеxt] // https://iоpsсiеnсе.iоp.оrg/artiсlе/10.1088/ 1742-6596/1410/1/012027.
  17. Григорьев М. Н., Михайлова Т. С., Мясоедова Т. Н. Получение кремний-углеродных пленок на электропроводящей и диэлектрической подложках методом электрохимического осаждения // Известия ЮФУ. Технические науки. 2018. № 7(201). С. 56–66.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Block diagram of the study of the aging process of silicon-carbon electrodes for supercapacitors

Baixar (731KB)
3. Fig. 2. Model of the equivalent circuit for interpreting the EIS data of silicon-containing electrodes

Baixar (31KB)
4. Fig. 3. Electrochemical impedance spectra as a result of cycling

Baixar (273KB)
5. Fig. 4. Change in capacitance (blue line) and resistance (orange line) during storage of silicon-carbon electrodes of supercapacitors

Baixar (255KB)

Declaração de direitos autorais © Bogush I., Plugotarenko N., Myasoedova T., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies