Measuring the field strength of radio interference from automotive equipment taking into account the parameters of the radio channel used

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents a modified technique for measuring the field strength of broadband and narrowband interference from automotive equipment using GSM and UMTS technologies for data transmission, as well as making a voice call. The results of testing the methodology are presented using the example of measuring the level of radio interference of automobile devices for calling in-vehicle emergency services.

Full Text

Restricted Access

About the authors

D. Drobzhev

Испытательный Центр «Омега», Севастопольский филиал ФГБУ НИИР

Author for correspondence.
Email: drobzhev@niir.ru

ведущий инженер

Russian Federation

G. Ivanov

Испытательный Центр «Омега», Севастопольский филиал ФГБУ НИИР

Email: ivanovga@niir.ru

инженер 1 категории

Russian Federation

N. Litvinova

Испытательный Центр «Омега», Севастопольский филиал ФГБУ НИИР

Email: litvinova@niir.ru

специалист

Russian Federation

V. Osaulko

Испытательный Центр «Омега», Севастопольский филиал ФГБУ НИИР

Email: osaulko@niir.ru

заместитель начальника отдела испытаний

Russian Federation

A. Rozvadovsky

Испытательный Центр «Омега», Севастопольский филиал ФГБУ НИИР

Email: raf@niir.ru

заместитель начальника отдела радиотелекоммуникационного оборудования

Russian Federation

References

  1. Manso M. et al. The Application of Telematics and Smart Devices in Emergencies. In: Gravina R., Palau C., Manso M., Liotta A., Fortino G. (eds) Integration, Interconnection, and Interoperability of IoT Systems. Internet of Things (Technology, Communications and Computing) // Springer, Cham. 2018.
  2. Mumtaz S., Huq K. M. S., Ashraf M. I., Rodriguez J., Monteiro V., Politis C. Cognitive vehicular communication for 5G // IEEE Communications Magazine, vol. 53, no. 7, pp. 109–117, 2015.
  3. Bonyár A. et al. A review on current eCall systems for autonomous car accident detection // 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 2017, pp. 1–8.
  4. Cabo M., Fernandes F., Pereira T., Fonseca B., Paredes H. Universal Access to eCall System // Procedia Computer Science, Volume 27, 2014, pp. 104–112.
  5. Carutasu G. Further challenges of eCall service and infrastructure // MIT 2016: proceedings of the 14th International Conference on Management and Innovative Technologies, Fiesa, Slovenia, 5th-7th September 2016, pp. 68–72.
  6. Kaminski T. et al. Effect Analysis on the Implementation of Automatic Emergency Call System eCall. In: Kaminski T., Ucinska M., Kaminska E., Filipek P. Journal of KONES Powertrain and Transport, 2011, vol. 18, no. 4.
  7. Beeharee A., Fremont G., Grau G., Campo R., Lovas T., Besnard L. Enabling Next Generation Emergency Call Service // Procedia – Social and Behavioral Sciences, Volume 48, 2012, pp. 2718–2727.
  8. Uhlir D. et al. Practial overview of commercial connected cars systems in Europe. In: Uhlir D., Sedlacek P., Hosek J. (eds) 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany, 6–8 Nov. 2017.
  9. Sun L, Li Y., Gao J. Architecture and Application Research of Cooperative Intelligent Transport Systems // Procedia Engineering, vol. 137, pp. 747–753, 2016.
  10. Festag A. Cooperative intelligent transport systems standards in Europe // IEEE communications magazine, vol. 52, no. 12, pp. 166–172, 2014.
  11. Rybak T., Steffka M. Automotive electromagnetic compatibility (EMC). ISBN: 1-4020-7713-0. 2004.
  12. Zhai L. Electromagnetic Compatibility of Electric Vehicle. ISBN 978-981-33-6164-5, 2021.
  13. Weston D. A. Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement. ISBN 978-1482299502. 2016.
  14. Michalski W. Recommendations and Regulations of the European Commission Regarding the Pan-European eCall Paper // Journal of Telecommunivations and Information Technology, 2009, vol.4, pp.138–145.
  15. Wisman T. eCall and the Quest for Effective Protection of the Right to Privacy // SSRN. September 17, 2015.
  16. Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 April 2015 concerning type-approval requirements for the deployment of the eCall in-vehicle system based on the 112 service and amending Directive 2007/46/EC
  17. EN 16072:2011 Intelligent transport system – eSafety – Pan-European eCall operating requirements.
  18. EN 16062:2011 Intelligent transport systems – eSafety – eCall high level application requirements (HLAP).
  19. CEN/TS 16454:2013 Intelligent transport systems – ESafety – ECall end to end conformance testing.
  20. EN 15722:2011 Intelligent transport systems – eSafety – eCall minimum set of data (MSD).
  21. EN 16102:2011 Intelligent transport systems – eCall – Operating requirements for third party support.
  22. UN Regulation No. 10 Uniform measures related to the unification of vehicles in terms of their electromagnetic compatibility, Revision 6 – Amendment 1, Date of entry into force: 25 September 2020.
  23. CISPR 12 Vehicles’, motorboats’ and spark-ignited engine-driven devices’ radio disturbance characteristics – Limits and methods of measurement. Fifth edition 2001 and Amd1: 2005.
  24. CISPR 25 Limits and methods of measurement of radio disturbance characteristics for the protection of receivers used on board vehicles. Second edition 2002 and corrigendum 2004.
  25. ETSI TS 151 010-1 Digital cellular telecommunications system (Phase 2+) (GSM).
  26. ETSI TS 134 121-1 Universal Mobile Telecommunications System (UMTS).
  27. ITU-R SM.1539-1 Variation of the boundary between the out-of-band and spurious domains required for the application of Recommendations ITU-R SM.1541 and ITU-R SM.329.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of measuring the field strength of broadband and narrowband interference of the UVEO without excluding operating frequencies

Download (408KB)
3. Fig. 2. Example of measuring the field strength of broadband and narrowband interference of the UVEO with the exclusion of the GSM900 frequency range

Download (396KB)
4. Fig. 3. Spurious emission control areas

Download (308KB)
5. Fig. 4. Scheme of auxiliary test equipment connection for communication in GSM/UMTS mode and for transmitting GLONASS/GPS signals

Download (175KB)
6. Fig. 5. Workplace for measuring the field strength of broadband and narrowband interference generated by UVEOS

Download (873KB)
7. Fig. 6. Parameters of the Agilent 8690 cellular mobile network simulator

Download (915KB)
8. Fig. 7. Results of field strength measurements of broadband and narrowband interference by UVEOS in the “emergency call” mode

Download (399KB)
9. Fig. 8. Algorithm of the field strength measurement technique

Download (542KB)

Copyright (c) 2023 Drobzhev D., Ivanov G., Litvinova N., Osaulko V., Rozvadovsky A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies