Thin metal oxide films for flexible and stretchable electronic devices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article discusses methods for synthesizing metal oxide films and sensors based on them on flexible and stretchable polymer substrates. Their advantages and disadvantages, applications and implementation prospects are shown.

Full Text

Restricted Access

About the authors

M. Belykh

Воронежский государственный технический университет

Author for correspondence.
Email: belykh.maks@yandex.ru

аспирант кафедры твердотельной электроники

Russian Federation, Воронеж

D. Permyakov

Воронежский государственный технический университет

Email: Dima.P.S@yandex.ru

аспирант кафедры твердотельной электроники

Russian Federation, Воронеж

A. Strogonov

Воронежский государственный технический университет

Email: andreistrogonov@mail.ru

д.т.н., профессор кафедры твердотельной электроники

Russian Federation, Воронеж

References

  1. Jeong H., Rogers J.A., Xu S. Continuous on-body sensing for the COVID-19 pandemic: gaps and opportunities // Sci. Adv. 2020. Vol. 6. No. 36. PP. 1–4.
  2. Wang H., Yang M., Tang Q. et al. Flexible, conformal organic synaptic transistors on elastomer for biomedical applications // Adv. Funct. Mater. 2019. Vol. 29. No. 19. PP. 1–9.
  3. Hua Q., Sun J., Liu H., Bao R. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing // Nat. Commun. 2018. Vol. 9. No. 1. PP. 1–11.
  4. Ostfeld A.E., Gaikwad A.M, Khan Y., Arias A.C. High-performance flexible energy storage and harvesting system for wea rable electronics // Sci. Rep. 2016. Vol. 6. No. 1. PP. 1–10.
  5. Zhou Z., Lan C., Wei R., Ho J.C. Transparent metal-oxide nanowires and their applications in harsh electronics // J. Mater. Chem. C. 2019. Vol. 7. No. 2. PP. 202–217.
  6. Dubourg G., Radović M. Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room temperature ethanol sensor // ACS Appl. Mater. Interfaces. 2019. Vol. 11. No. 6. PP. 6257–6266.
  7. Li R., Jiang K., Chen S. et al. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors // RSC Adv. 2017. Vol. 7. No. 83. PP. 52503–52509.
  8. Gutruf P., Zeller E., Walia S. et al. Stretchable and tunable microtectonic ZnO-based sensors and photonics // Small. 2015. Vol. 11. No. 35. PP. 4532–4539.
  9. Lacour S.P., Wagner S., Huang Z., Suo Z. Stretchable gold conductors on elastomeric substrates // Appl. Phys. Lett. 2003. Vol. 82. No. 15. PP. 2404–2406.
  10. Mebarki F., David E. Dielectric characterization of thermally aged recycled Polyethylene Terephthalate and Polyethylene Naphthalate reinforced with inorganic fillers // Polym. Eng. Sci. 2018. Vol. 58. No. 5. PP. 701–712.
  11. Manasevit H.M., Simpson W.I. The use of metal-organics in the preparation of semiconductor materials // J. Electrochem. Soc. 1969. Vol. 116. No. 12. P. 1725.
  12. Dingemans G., Sanden M.C.M., Kessels W.M.M. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses // Plasma Processes Polym. 2012. Vol. 9. PP. 761–771.
  13. Parasuraman K., Raghunathan V.S. Status of pulsed laser deposition: challenges and opportunities // Surf. Eng. 2006. Vol. 22. PP. 81–83.
  14. Hwang T., Byun M., Jeong C.K., Lee K.J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications // Adv. Healthcare Mater. 2015. Vol. 4. No. 5. PP. 646–658.
  15. Park J.W., Kang B.H., Kim H.J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics // Adv. Funct. Mater. 2020. Vol. 30. No. 20. PP. 1–40.
  16. Kumar R.V., Diamant Y., Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates // Chem. Mater. 2000. Vol. 12. No. 8. PP. 2301–2305.
  17. Tazikeh S., Akbari A., Talebi A., Talebi E. Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method // Mater. Sci. 2014. Vol. 32. No. 1. PP. 98–101.
  18. Mishra D., Arora R., Lahiri S. et al. Synthesis and characterization of iron oxide nanoparticles by solvothermal method // Prot. Met. Phys. Chem. Surf. 2014. Vol. 50. No. 5. PP. 628–631.
  19. Schutz M.B., Xiao L., Lehnen T. et al. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides // Int. Mater. Rev. 2018. Vol. 63. No. 6. PP. 341–374.
  20. Qiu X., Liu Y., Wang L., Fan L.-Z. Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries // Appl. Surf. Sci. 2018. Vol. 434. PP. 1285–1292.
  21. Zhang J., Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol–gel method // J. Solid State Chem. 2004. Vol. 177. No. 4–5. PP. 1425–1430.
  22. Bang J.H., Suslick K. Applications of ultrasound to the synthesis of nanostructured materials // Adv. Mater. 2010. Vol. 22. PP. 1039–1059.
  23. Rho J., Kim S.J., Heo W. et al. PbZrxTi1–xO3 ferroelectric thin-film capacitors for flexible nonvolatile memory applications // IEEE Electron Device Lett. 2010. Vol. 31. No. 9. PP. 1017–1019.
  24. Baghbanzadeh M., Carbone L., Cozzoli P.D., Kappe C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals // Angew. Chem., Int. Ed. 2011. Vol. 50. No. 48. PP. 11312–11359.
  25. Yang S., Su B., Bitar G., Lu N. Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates // Int. J. Fract. 2014. Vol. 190. PP. 99–110.
  26. Dong D., Dhanabalan S.S., Elango P.F.M. et al. Emerging applications of metal-oxide thin films for flexible and stretchable electronic devices // Phys. Rev. 2023. Vol. 10. No. PP. 1–37.
  27. Wang S., Huang Y., Rogers J.A. Mechanical designs for inorganic stretchable circuits in soft electronics // IEEE Trans. Compon., Packag., Manuf. Technol. 2015. Vol. 5. No. 9. PP. 1201–1218.
  28. Munzenrieder G, Cantarella G., Vogt C. et al. Stretchable and conformable oxide thin-film electronics // Adv. Electron. Mater. 2015. Vol. 1. No. 3. PP. 1–8.
  29. Sim K., Rao Z., Zou Z. et al. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces // Sci. Adv. 2019. Vol. 5. No. 8. PP. 1–10.
  30. Gutruf P., Shah C.M., Walia S. et al. Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes // NPG Asia Mater. 2013. Vol. 5. No. 9. PP. 1–7.
  31. Gutruf P., Zeller E., Walia S. et al. Stretchable and tunable microtectonic ZnO-based sensors and photonics // Small. 2015. Vol. 11. No. 35. PP. 4532–4539.
  32. Shin J., Jeong B., Kim J. et al. Sensitive wearable temperature sensor with seamless monolithic integration // Adv. Mater. 2020. Vol. 32. No. 2. PP. 1–9.
  33. Pang Z., Nie Q., Lv P. et al. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values // Nanotechnology. 2017. Vol. 28. No. 22. PP. 1–22.
  34. Patil P.H., Kulkarni V.V., Jadhav S.A. An overview of recent advancements in conducting polymer–metal oxide nanocomposites for supercapacitor application // J. Compos. Sci. 2022. Vol. 6. No. 12. PP. 1–23.
  35. Palencia M., Ramírez-Rincón J.A., Restrepo-Holguín D.F. Polymer-metal oxide composite as sensors // Renewable Polymers and Polymer-Metal Oxide Composites / Ed. S. Haider, A. Haider. Elsevier. 2022. PP. 283–306.
  36. Yu X., Zeng L., Zhou N. et al. Ultra-flexible, ‘invisible’ thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends // Adv. Mater. 2015. Vol. 27. No. 14. PP. 2390–2399.
  37. Benabid F.Z., Kharchi N., Zouai F. et al. Impact of co-mixing technique and surface modification of ZnO nanoparticles using stearic acid on their dispersion into HDPE to produce HDPE/ZnO nanocomposites // Polym. Polym. Compos. 2019. Vol. 27. No. 7. PP. 389–399.
  38. Lee S.H., Kim G., Lim J.W. et al. High-performance ZnO: Ga/Ag/ZnO: Ga multilayered transparent electrodes targeting large-scale perovskite solar cells // Sol. Energy Mater. Sol. Cells. 2018. Vol. 186. PP. 378–384.
  39. Zhao G., Kim S.M., Lee S.G. et al. Bendable solar cells from stable, flexible, and transparent conducting electrodes fabricated using a nitrogen-doped ultrathin copper film // Adv. Funct. Mater. 2016. Vol. 26. No. 23. PP. 4180–4191.
  40. Jung J., Cho H., Yuksel R. et al. Stretchable/flexible silver nanowire electrodes for energy device applications // Nanoscale. 2019. Vol. 11. No. 43. PP. 20356–20378.
  41. Rajesh Y., Padhi S.K., Krishna M.G. ZnO thin film-nanowire array homo-structures with tunable photoluminescence and optical band gap // RSC Adv. 2020. Vol. 10. No. 43. PP. 25721–25729.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Application of metal oxide films on flexible and stretchable substrates

Download (1MB)
3. Fig. 2. Example of the design of an external stretching structure for thin films of metal oxides

Download (429KB)
4. Fig. 3. Design of a transistor made on a wavy structure

Download (552KB)
5. Fig. 4. Serpentine structure

Download (979KB)
6. Fig. 5. Lamellar structure of the oxide film surface in ITO-PDMS samples after multiple stretching cycles

Download (1MB)
7. Fig. 6. Flexible film based on nickel oxide nanoparticles

Download (1MB)
8. Fig. 7. ZnO nanowires synthesized by hydrothermal method

Download (562KB)

Copyright (c) 2025 Belykh M., Permyakov D., Strogonov A.