Three-gap multifrequency resonator for miniature Multibeam klystrons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A three-gap multibeam prismatic klystron resonator with planar strip elements on a dielectric substrate was studied. The results are obtained, which confirm that the resonator can be used in low-voltage transient multibeam amplifying or generator klystrons.

Texto integral

Acesso é fechado

Sobre autores

А. Miroshnichenko

СГТУ им. Ю. А. Гагарина

Autor responsável pela correspondência
Email: journal@electronics.ru

д. т. н., доцент кафедры ЭПУ

Rússia

М. Chernyshev

СГТУ им. Ю. А. Гагарина

Email: journal@electronics.ru

ст. преподаватель кафедры ЭПУ

Rússia

N. Akafyeva

СГТУ им. Ю. А. Гагарина

Email: journal@electronics.ru

к. т. н., доцент кафедры ЭПУ

Rússia

Bibliografia

  1. Nusinovich G. S., Levush B., Abe D. K. A review of the development of Multiple-beam Klystron and TWTs; Research report, Naval Research Laboratory, USA, March, 2003.
  2. Cai J. C., Syratchev I., Burt G. Design Study of a High-Power Ka-Band High-Order-Mode Multibeam Klystron // IEEE transactions on electron devices. 2020. Vol. 67. No. 12.
  3. Teryaev V. E., Shchelkunov S. V., Hirshfield J. L. Innovative Two-Stage Multibeam Klystron: Concept and Modeling // IEEE transactions on electron devices. 2020. Vol. 67. No. 7.
  4. Quangui Chao, Rui Zhang, Yong Wang, Xu Zhang. Modeling and Design of a High-Efficiency Multibeam Klystron // IEEE transactions on electron devices. 2022. Т. 69. № . 5. С. 2625–2630.
  5. Bin Shen, Yaogen Ding, Zhaochuan Zhang, Honghong Gu, Haibing Ding, Jing Cao, Caiying Wang, and Dongping Gao. Research and Development of S-Band High Power Multibeam Klystron // IEEE transactions on electron devices. 2014. Vol. 61. No. 6.
  6. Korolev A. N., Zaitsev S. A., Pobedonostsev A. S., Rumjantsev S. A., Torbik V. M., Zakurdayev A. D., Sazonov B. V. The Results of the Complex Investigation and Optimization of the Transmitting Modules, Using the Miniature Multibeam Klystrons and TWTs.
  7. Kotov A. S., Gelvich E. A., Zakurdayev A. D. Small-size complex microwave devices (CMD) for onboard applications // IEEE transactions on electron devices. 2007. Vol. 54. No. 5. PP. 1049–1053.
  8. Григорьев А. Д. Терагерцевая электроника. М.: ФИЗМАЛИТ, 2020. 308 с.
  9. Ryskin N. M., Torgashov R. A., Benedik A. I. Study of miniaturized low-voltage backward-wave oscillator with a planar slow-wave structure // Izvestiya VUZ. Applied Nonlinear Dynamics. 2017. Vol. 25. Is. 5. PP. 35–46.
  10. Геворкян В., Кочемасов В. Объемные диэлектрические резонаторы – основные типы, характеристики, производители // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2016. № 4 (00154). С. 62–76.
  11. ВЧ и СВЧ керамические материалы и микроволновые элементы. Каталог продукции ООО «Керамика». СПб, 2004. 35 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Resonator design: a – side view of the resonator with the side cover removed; b – cross section of the resonator

Baixar (373KB)
3. Fig. 2. Dependence of parameter S21 for the studied resonant frequencies

Baixar (254KB)
4. Fig. 3. Distribution of high-frequency magnetic field in the resonator along the transit channel

Baixar (202KB)
5. Fig. 4. Change in resonant frequencies of the resonator depending on the length of the tuning element l0 − l1

Baixar (174KB)
6. Fig. 5. Results of studies of the influence of the dielectric constant of the substrate on the resonant frequency (a) and intrinsic quality factor (b)

Baixar (343KB)
7. Tab. 1

Baixar (49KB)
8. Tab. 2

Baixar (48KB)
9. Tab. 3

Baixar (53KB)
10. Tab. 4

Baixar (47KB)
11. Tab. 5

Baixar (49KB)
12. Tab. 6

Baixar (48KB)
13. Tab. 7

Baixar (53KB)
14. Tab. 8

Baixar (47KB)

Declaração de direitos autorais © Miroshnichenko А., Chernyshev М., Akafyeva N., 2023