Three-gap multifrequency resonator for miniature Multibeam klystrons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A three-gap multibeam prismatic klystron resonator with planar strip elements on a dielectric substrate was studied. The results are obtained, which confirm that the resonator can be used in low-voltage transient multibeam amplifying or generator klystrons.

Full Text

Restricted Access

About the authors

А. Miroshnichenko

СГТУ им. Ю. А. Гагарина

Author for correspondence.
Email: journal@electronics.ru

д. т. н., доцент кафедры ЭПУ

Russian Federation

М. Chernyshev

СГТУ им. Ю. А. Гагарина

Email: journal@electronics.ru

ст. преподаватель кафедры ЭПУ

Russian Federation

N. Akafyeva

СГТУ им. Ю. А. Гагарина

Email: journal@electronics.ru

к. т. н., доцент кафедры ЭПУ

Russian Federation

References

  1. Nusinovich G. S., Levush B., Abe D. K. A review of the development of Multiple-beam Klystron and TWTs; Research report, Naval Research Laboratory, USA, March, 2003.
  2. Cai J. C., Syratchev I., Burt G. Design Study of a High-Power Ka-Band High-Order-Mode Multibeam Klystron // IEEE transactions on electron devices. 2020. Vol. 67. No. 12.
  3. Teryaev V. E., Shchelkunov S. V., Hirshfield J. L. Innovative Two-Stage Multibeam Klystron: Concept and Modeling // IEEE transactions on electron devices. 2020. Vol. 67. No. 7.
  4. Quangui Chao, Rui Zhang, Yong Wang, Xu Zhang. Modeling and Design of a High-Efficiency Multibeam Klystron // IEEE transactions on electron devices. 2022. Т. 69. № . 5. С. 2625–2630.
  5. Bin Shen, Yaogen Ding, Zhaochuan Zhang, Honghong Gu, Haibing Ding, Jing Cao, Caiying Wang, and Dongping Gao. Research and Development of S-Band High Power Multibeam Klystron // IEEE transactions on electron devices. 2014. Vol. 61. No. 6.
  6. Korolev A. N., Zaitsev S. A., Pobedonostsev A. S., Rumjantsev S. A., Torbik V. M., Zakurdayev A. D., Sazonov B. V. The Results of the Complex Investigation and Optimization of the Transmitting Modules, Using the Miniature Multibeam Klystrons and TWTs.
  7. Kotov A. S., Gelvich E. A., Zakurdayev A. D. Small-size complex microwave devices (CMD) for onboard applications // IEEE transactions on electron devices. 2007. Vol. 54. No. 5. PP. 1049–1053.
  8. Григорьев А. Д. Терагерцевая электроника. М.: ФИЗМАЛИТ, 2020. 308 с.
  9. Ryskin N. M., Torgashov R. A., Benedik A. I. Study of miniaturized low-voltage backward-wave oscillator with a planar slow-wave structure // Izvestiya VUZ. Applied Nonlinear Dynamics. 2017. Vol. 25. Is. 5. PP. 35–46.
  10. Геворкян В., Кочемасов В. Объемные диэлектрические резонаторы – основные типы, характеристики, производители // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2016. № 4 (00154). С. 62–76.
  11. ВЧ и СВЧ керамические материалы и микроволновые элементы. Каталог продукции ООО «Керамика». СПб, 2004. 35 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Resonator design: a – side view of the resonator with the side cover removed; b – cross section of the resonator

Download (373KB)
3. Fig. 2. Dependence of parameter S21 for the studied resonant frequencies

Download (254KB)
4. Fig. 3. Distribution of high-frequency magnetic field in the resonator along the transit channel

Download (202KB)
5. Fig. 4. Change in resonant frequencies of the resonator depending on the length of the tuning element l0 − l1

Download (174KB)
6. Fig. 5. Results of studies of the influence of the dielectric constant of the substrate on the resonant frequency (a) and intrinsic quality factor (b)

Download (343KB)
7. Tab. 1

Download (49KB)
8. Tab. 2

Download (48KB)
9. Tab. 3

Download (53KB)
10. Tab. 4

Download (47KB)
11. Tab. 5

Download (49KB)
12. Tab. 6

Download (48KB)
13. Tab. 7

Download (53KB)
14. Tab. 8

Download (47KB)

Copyright (c) 2023 Miroshnichenko А., Chernyshev М., Akafyeva N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies