Распознавание кардиосигналов с использованием нейронных сетей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассмотрено применение нейронных сетей для распознавания кардиосигналов, получаемых из фонендоскопа. Приведена информация об основных этапах реализации процедур обучения нейронной сети и принятия решений при последующей классификации. Представлены результаты обработки кардиосигналов методами статистического анализа и машинного обучения.

Полный текст

Доступ закрыт

Об авторах

С. Дворников

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Автор, ответственный за переписку.
Email: ikirshina@mail.ru

к.т.н., доцент кафедры конструирования и технологий электронных и лазерных средств

Россия

С. Дворников

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Email: ikirshina@mail.ru

д.т.н., профессор кафедры конструирования и технологий электронных и лазерных средств

Россия

И. Киршина

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Email: ikirshina@mail.ru

к.э.н., доцент кафедры конструирования и технологий электронных и лазерных средств

О. Лифанова

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Email: ikirshina@mail.ru

магистр кафедры медицинской радиоэлектроники

Россия

О. Тихоненкова

Санкт-Петербургский государственный университет аэрокосмического приборостроения

Email: ikirshina@mail.ru

к.т.н., заведующий кафедрой медицинской радиоэлектроники

Россия

Список литературы

  1. Шарибоев Н., Джураев Ш., Жабборов А. Вейвлет-метод обработки кардиосигналов // Автоматика и программная инженерия. 2020. № 1(31). С. 37–41.
  2. Витязева Т.А. Реализация оптимальной многоскоростной обработки кардиосигнала на процессоре 1967ВН028 АО «ПКК «Миландр» в целях анализа вариабельности сердечного ритма // Биомедицинская радиоэлектроника. 2021. Т. 24, № 4. С. 83–88. – https://doi.org/10.18127/j15604136-202104-11
  3. Дворников С. В., Якушенко С. А., Лифанова О. Н. Кратномасштабная обработка кардиосигналов // Информация и космос. 2024. № 2. С. 85–92.
  4. Коннова Н. С., Басараб М. А., Басараб Д. А. и др. Подготовка и применение данных электросейсмокардиографии для диагностики состояния сердечно-сосудистой системы человека // Нейрокомпьютеры: разработка, применение. 2019. № 1. С. 52–67.
  5. Бобоходжаев Р. Р., Мартышкин А. И. Обзор и анализ актуальных аспектов использования кардиографов в медицине // Современные информационные технологии. 2024. № 39(39). С. 144–147.
  6. Андреев В. Г., Нгуен Т. Ф. Обработка кардиосигналов на фоне комбинированных помех // Вестник Рязанского государственного радиотехнического университета. 2014. № 48. С. 60–64.
  7. Дворников С. В., Дворников С. С. Эмпирический подход к оценке помехоустойчивости сигналов фазовой модуляции // Информатика и автоматизация. 2020. Т. 19. № 6. С. 1280–1306. – https://doi.org/10.15622/ia.2020.19.6.6
  8. Сикарев И. А., Иванюк В. Ю., Сахаров В. В. Цифровизация и идентификация ЭКГ-сигналов с применением вейвлет-технологий // Проблемы информационной безопасности. Компьютерные системы. 2022. №2. С. 82–97. – https://doi.org/10.48612/jisp/b4dd-gma4-epzv.
  9. Ластовецкий А. Г., Минина Е. Н. Метрологическая оценка фазового усредненного кардиоцикла в решении задач восстановительной и спортивной медицины // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2020. Т. 97. № 3. С. 14–23. – https://doi.org/10.17116/kurort20209703114.
  10. Грузевич Ю. К., Ачильдиев В. М., Евсеева Ю. Н., Бедро Н. А. Исследование пиков кардиосигналов различной природы // Биомедицинская радиоэлектроника. 2021. Т. 24, № 6. С. 5–16.
  11. Непомнящий О. В., Хантимиров А. Г., Альсагир М. М. И., Шабир С. Использование сверточной нейронной сети при анализе электрокардиограмм // Нейрокомпьютеры: разработка, применение. 2023. Т. 25. № 2. С. 58–65. – https://doi.org/10.18127/j19998554-202302-05.
  12. Мясникова Н. В., Матвеева О. С. Обработка кардиосигнала с использованием нейросетевых технологий // Инжиниринг и технологии. 2020. Т. 5. № 1. С. 12–16. – https://doi.org/10.21685/ 2587-7704-2020-5-1-3.
  13. Yeh Y.-C., Wang W.-J. QRS complexes detection for ECG signal: The Difference Operation Method (DOM) // Computer methods and programs in biomedicine. 2008. V. 91. PP. 245–254.
  14. Ince T., Kiranyaz S., Gabbouj M. A generic and robust system for automated patient-specific classification of ECG signals // IEEE Trans. Biomed. Eng. 2009. V. 56. PP. 1415–1426.
  15. de Chazal P., O’Dwyer M., Reilly R. B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features // IEEE Trans. Biomed. Eng. 2004. V. 51. PP. 1196–1206.
  16. Дворников С. В., Манаенко С. С., Дворников С. С. Параметрическая мимикрия сигналов, модулированных колебаниями и сформированных в различных функциональных базисах // Информационные технологии. 2015. Т. 21. № 4. С. 259–263.
  17. Вентцель Е.С. Теория вероятностей: Учеб. для вузов / 6-е изд. стер. М.: Высш. шк., 1999. 576 с.
  18. Inan O. T., Giovangrandi L., Kovacs G. T. A. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features // IEEE Trans. Biomed. Eng. 2006. V. 53. PP. 2507–2515.
  19. Ince T., Kiranyaz S., Gabbouj M. A generic and robust system for automated patient-specific classification of ECG signals // IEEE Trans. Biomed. Eng. 2009. V. 56. PP. 1415–1426.
  20. Jiang W., Kong S. G. Block-based neural networks for personalized ECG signal classification // IEEE Trans. Neural Netw. 2007. V. 18. No. 6. PP. 1750–1761.
  21. Anthony M., Bartlett P. L. Neural network learning: theoretical foundations. Cambridge University Press, Cambridge, 1999.
  22. Berner J., Grohs P., Kutyniok G., Petersen P. The modern mathematics of deep learning. – arXiv preprint arXiv:2105.04026, 2021.
  23. Васильева Д. В., Дворников С. С., Толстуха Ю. Е. и др. Формирование векторов признаков для систем видеонаблюдения // Вопросы радиоэлектроники. Серия: Техника телевидения. 2023. № 4. С. 62–68.
  24. Васильева Д. В., Дворников С. В., Якушенко С. А., Дворников С. С. Автоматизация процедур обнаружения лесных пожаров по результатам обработки видео // Научно-аналитический журнал «Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России». 2023. № 4. С. 47–58. – https://doi.org/10.61260/2218-130X-2024-2023-4-47-58.
  25. Васильева Д. В., Якушенко С. А., Дворников С. С. и др. Обнаружение морских дронов в оптическом диапазоне // Морской вестник. 2023. № 4(88). С. 90–92.
  26. Дворников С. В., Дворников С. С., Коноплев М. А. Алгоритм распознавания сигналов радиосвязи на основе симметрических матриц // Информационные технологии. 2010. № 9. С. 75–77.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Кардиосигналы, полученные посредством фонендоскопа

Скачать (99KB)
3. Рис. 2. Кардиосигналы s1(t) и s2(t) в увеличенном масштабе

Скачать (180KB)
4. Рис. 3. Кардиосигналы s1(t) и s3(t) в одном масштабе

Скачать (237KB)
5. Рис. 4. Принцип построения однослойной нейронной сети

Скачать (163KB)
6. Рис. 5. Структура однослойной нейронной сети

Скачать (60KB)
7. Рис. 6. Фрагмент матрицы весов для первых 50 значений

Скачать (106KB)

© Дворников С., Дворников С., Киршина И., Лифанова О., Тихоненкова О., 2025