Development of domestic software tools for physical design and digital VLSI verification

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Lomonosov Moscow State University, as part of a cooperation headed by ISTC MIET, is developing three components of VLSI CAD: physical synthesis tool, parasitic parameters calculation tool and universal database for storing information on the IC being developed. The article discusses the tasks solved in the course of this work.

Texto integral

Acesso é fechado

Sobre autores

V. Sazonov

МГУ имени М.В. Ломоносова

Autor responsável pela correspondência
Email: sazonov@cosmos.msu.ru

декан факультета космических исследований, д.ф.-м.н.

Rússia

R. Erokhin

МГУ имени М.В. Ломоносова

Email: sazonov@cosmos.msu.ru

факультет космических исследований, научный сотрудник

Rússia

V. Serov

МГУ имени М.В. Ломоносова

Email: sazonov@cosmos.msu.ru

факультет космических исследований, старший программист

Rússia

M. Sheblaev

МГУ имени М.В. Ломоносова

Email: sazonov@cosmos.msu.ru

факультет космических исследований, ассистент

Rússia

Bibliografia

  1. LEF/DEF 5.8 Language Reference // https://coriolis.lip6.fr/doc/lefdef/lefdefref/lefdefref.pdf.
  2. GDSII Stream Format Manual // http://bitsavers.informatik.uni-stuttgart.de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf.
  3. Horowitz M., Dutton. R.W. Resistance Extraction from Mask Layout Data // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, V. 2, No. 3, PP. 145–150, July 1983.
  4. Kao W.H., Lo C-Y., Basel M., Singh R. Parasitic extraction: current state of the art and future trends // Proceedings of the IEEE, V. 89, No. 5, PP. 729–739, May 2001.
  5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. Учеб. пособие для вузов. М.: Наука, 1977. 735 с.
  6. Cao W., Harrington R., Mantz J., Sarkar T. Multiconductor transmission lines in multilayered dielectric media // IEEE Trans. Microwave Theory Tech., V. MTT-32, PP. 439–450, Apr. 1984.
  7. Arora N.D., Roal K.V., Schumann R., Richardson L.M. Modeling and extraction of interconnect capacitances for multi-layer VLSI circuits // IEEE Trans. Computer-Aided Design, V. 15, PP. 58–67, Jan. 1996.
  8. Препарата Ф., Шеймос М. Вычислительная геометрия: Введение: Пер. с англ. М.: Мир, 1989. 478 с.
  9. Lopez A. How is the Design Process of Microchips: Analog IC Design Flow to Tapeout // https://miscircuitos.com/design-process-of-chips-asics-flow-from-design-totapeout/.
  10. Virtuoso Studio Custom design for the real world // www.cadence.com.
  11. Analog Design // www.synopsys.com.
  12. IC Design, Verification & Manufacturing Products // https://eda.sw.siemens.com/en-US/ic/products/.
  13. Bailey B. 10X productivity boost is nothing to be sneezed // www.eetimes.com.
  14. Bailey B. A look back on 2012: Design tools and flows // www.eetimes.com.
  15. Wang Q. Opinion: What Comes After Power Intent Formats? // www.eetimes.com.
  16. Lavagno L. et al. Electronic design automation for IC system design, verification, and testing // CRC Press. 2017.
  17. Burstein M., Youssef M.N. Timing influenced layout design // 22nd ACM/IEEE Design Automation Conference. IEEE, 1985. PP. 124–130.
  18. Alpert C.J., Mehta D.P., Sapatnekar S.S. Handbook of algorithms for physical design automation // CRC press, 2008.
  19. Boyd S.P., Vandenberghe L. Convex optimization // Cambridge university press, 2004.
  20. Kahng A.B. et al. VLSI physical design: from graph partitioning to timing closure // Netherlands: Springer, 2011. V. 312.
  21. Sherwani N.A. Algorithms for VLSI physical design automation // Springer Science & Business Media. 2012.
  22. Кристофидес Н. Теория графов. Алгоритмический подход. 1978.
  23. Flach G. et al. An incremental timing-driven flow using quadratic formulation for detailed placement // 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). IEEE. 2015. PP. 1–6.
  24. Kim M.C. et al. A SimPLR method for routability-driven placement // 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE. 2011. PP. 67–73.
  25. Brenner U., Struzyna M., Vygen J. BonnPlace: Placement of leading-edge chips by advanced combinatorial algorithms // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2008. V. 27. No. 9. PP. 1607–1620.
  26. Borkar S. Design perspectives on 22 nm CMOS and beyond // Proceedings of the 46th Annual Design Automation Conference. 2009. PP. 93–94.
  27. Tsay R.S. An exact zero-skew clock routing algorithm // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1993. V. 12. No. 2. PP. 242–249.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cell placement using the analytical method [16]

Baixar (64KB)
3. Fig. 2. Legalization of cells [16]

Baixar (40KB)
4. Fig. 3. Applying the rip-up-and-re-route methodology to the conflict (b, c) and creating a correct trace (a, b, c) [18]

Baixar (53KB)
5. Fig. 4. Capacitances of extended conductors

Baixar (66KB)
6. Fig. 5. Examples of two-dimensional templates

Baixar (50KB)
7. Fig. 6. Capacities that cannot be taken into account using two-dimensional templates

Baixar (73KB)
8. Fig. 7. Design route without UBD

Baixar (118KB)
9. Fig. 8. Design route with UBD

Baixar (99KB)

Declaração de direitos autorais © Sazonov V., Erokhin R., Serov V., Sheblaev M., 2025