Method of Detecting Artifacts on a Complex Background by an Optoelectronic System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A procedure for developing a detection method using a passive optoelectronic system of an unmanned aircraft against a complex background formed by atmospheric radiation in the far infrared range (8–13 microns) is proposed. The atmospheric background on which the unmanned aircraft is detected is formed by the radiation of the cloudy atmosphere when observed from the Earth’s surface. Of particular interest is the complex background created by cumulus clouds of different scores or other classes of clouds with discontinuities. The following assumptions are accepted: a short-focus optoelectronic system has a wide field of view, video information about the artifact and background characteristics is presented in binary form. The processed video stream is a two-dimensional array, the elements of which contain information about the level of energy brightness of radiation in the selected direction. The emphasis is on the need to monitor changes in the structure of the emitting background and the absence of the need to process each frame of the video stream.

Full Text

Restricted Access

About the authors

Igor V. Yakimenko

Branch of National Research University Moscow Power Engineering Institute

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-1003-8403

Doctor of Technical Sciences, Associate Professor

Russian Federation, Smolensk

Vladimir I. Bobkov

Branch of National Research University Moscow Power Engineering Institute

Email: journal@electronics.ru
ORCID iD: 0000-0002-5715-7450

Doctor of Technical Sciences, Associate Professor

Russian Federation, Smolensk

Yuri I. Yakimenko

Branch of National Research University Moscow Power Engineering Institute

Email: journal@electronics.ru
ORCID iD: 0009-0001-2631-5997

post-graduate student

Russian Federation, Smolensk

References

  1. YAkimenko I. V. Metody, modeli i sredstva obnaruzheniya vozdushnyh celej na atmosfernom fone shirokougol’nymi optiko-elektronnymi sistemami. S-Pb: Lan’. 2022. – 176 s. Якименко И. В. Методы, модели и средства обнаружения воздушных целей на атмосферном фоне широкоугольными оптико-электронными системами. С-Пб: Лань. 2022. 176 с.
  2. Yakimenko I. V., Mishchenko A. M., Rachkovsky S. S., Smolin V. A. Results of spatial structure of atmosphere radiation in a spectral range (1.5–2) μm research. Light & Engineering. 2018;26(3):7–13.
  3. Yakimenko I. V., Yakimenko Yu.I., Smolin V. A., Rasskaza D. S. Statistical models of the radiance spatial structure of clouds of different types in the 1.5–2 µm range. Proceedings of International Symposium «Atmospheric Radiation and Dynamics» (ISARD-2019). Saint-Petersburg State University, 2019. pp. 220–221.
  4. Yakimenko I. V., Naroda D. S., Smolin V. A. Contrast method for detecting unmanned aircraft in the range of 1.5–2 microns. Proceedings of International Symposium «Atmospheric Radiation and Dynamics» (ISARD-2021). Saint-Petersburg State University, 2021. pp. 46–50.
  5. YAkimenko I. V., Rasskaza D. S., Smolin V. A. Optiko-informacionnyj metod obnaruzheniya bespilotnyh vozdushnyh sudov robotizirovannoj optiko-elektronnoj sistemoj. Trudy GrafiKon 2022. 32-ya Mezhdunarodnaya konferenciya po komp’yuternoj grafike i mashinnomu zreniyu, 19–22 sentyabrya 2022 g., Ryazanskij gosudarstvennyj radiotekhnicheskij universitet im. V. F. Utkina, Ryazan’, Rossiya, s. 548–558. Якименко И. В., Рассказа Д. С., Смолин В. А. Оптико-информационный метод обнаружения беспилотных воздушных судов роботизированной оптико-электронной системой. Труды ГрафиКон 2022. 32-я Международная конференция по компьютерной графике и машинному зрению, 19–22 сентября 2022 г., Рязанский государственный радиотехнический университет им. В. Ф. Уткина, Рязань, Россия, с. 548–558.
  6. Smolin V. A. Issledovanie vozmozhnosti obnaruzheniya bespilotnogo letatel’nogo apparata na atmosfernom fone v blizhnem infrakrasnom diapazone. Radiotekhnika. 2017;10:175–183. Смолин В. А. Исследование возможности обнаружения беспилотного летательного аппарата на атмосферном фоне в ближнем инфракрасном диапазоне. Радиотехника. 2017;10:175–183.
  7. Alpatov B. A., Blohin A. N., Murav’ev V. S. Algoritm obrabotki izobrazhenij dlya sistem avtomaticheskogo soprovozhdeniya vozdushnyh ob»ektov. Cifrovaya obrabotka signalov. 2010;4. Алпатов Б. А., Блохин А. Н., Муравьев В. С. Алгоритм обработки изображений для систем автоматического сопровождения воздушных объектов. Цифровая обработка сигналов. 2010;4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Generalized block diagram of the POES by a robotic system

Download (389KB)
3. Fig. 2. The method of optical and information support for the detection of artifacts by a robotic system on a complex background

Download (1MB)
4. Fig. 3. Methodology for studying the spatial structure of AB radiation

Download (458KB)
5. Fig. 4. Dependences of the spatial correlation coefficient R(n) of the AB of various forms of clouds in horizontal directions (β) between the lines of the BTI

Download (364KB)
6. Fig. 5. Spatial structure of AB radiation: a) with large-scale inhomogeneities; b) with small-scale inhomogeneities

Download (203KB)
7. Fig. 6. Research methodology spatial-temporal structure of AB radiation (a); averaged type of estimation of the coefficient of mutual correlation R(t) between the frames of the video stream (b)

Download (378KB)
8. Fig. 7. Dependence of the correlation radius on the angle of the AB observation point (ε)

Download (495KB)

Copyright (c) 2023 Yakimenko I.V., Bobkov V.I., Yakimenko Y.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies