Non-Contact Measurement System for Geometric Parameters of Ion Thruster Grids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The most important parameter of an ion thruster, affecting its performance and service life, is the gap between the screen and the accelerating and decelerating grids of the ion optics unit. During operation of the ion thruster, the gap is changed due to the heating and thermal expansion of the grids. Awareness of this gap in the hot grid is necessary for adequate assessment of the ion thrust operating parameters and service life. The paper considers a measuring system based on the direct shadow parallel light method. To register the grid position, the pins protruding above the grid surface are placed on them. The image is recorded by a telecentric lens that lowers the requirements for positioning accuracy of the measurement object. The illumination unit and the image acquisition unit are placed in the pressure-tight housings that allow measurements to be performed in a vacuum chamber. The system has successfully passed the tests, the measurement results are given in the paper.

Full Text

Restricted Access

About the authors

Petr S. Zavialov

Design and Technology Institute of Scientific Instrumentation SB RAS

Author for correspondence.
Email: aig@oparina4.ru
Scopus Author ID: 177280

Cand.of Sc. (Eng.), Works as an assistant director for scientific and technical projects at the Tecnological

Russian Federation, Novosibirsk

Evgeny V. Vlasov

Design and Technology Institute of Scientific Instrumentation SB RAS

Email: aig@oparina4.ru
Scopus Author ID: 677894

Master of Engineering and Technol-ogy with a degree in Optotechnics, works as a researcher

Russian Federation, Novosibirsk

Aleksey V. Beloborodov

Design and Technology Institute of Scientific Instrumentation SB RAS

Email: aig@oparina4.ru
Scopus Author ID: 177287

works as a leading programmer

Russian Federation, Novosibirsk

Maxim S. Kravchenko

Design and Technology Institute of Scientific Instrumentation SB RAS

Email: aig@oparina4.ru
Scopus Author ID: 825558

Master in Applied Informatics, works as a researcher

Russian Federation, Novosibirsk

Anna A. Gutschina

Design and Technology Institute of Scientific Instrumentation SB RAS

Email: aig@oparina4.ru
Scopus Author ID: 177286

works as a leading programmer

Russian Federation, Novosibirsk

Dmitry V. Skokov

Design and Technology Institute of Scientific Instrumentation SB RAS

Email: aig@oparina4.ru
Scopus Author ID: 933269

works as a chief designer, 3D-design

Russian Federation, Novosibirsk

References

  1. Ramsey W. D. 12-cm Multi-cusp Ion Thruster Inert Gas Performance. NASA Contractor Report CR-168208. Loral EOS Document 84-07-29. July 1984.
  2. MacRae G.S., Zavesky R. J., Gooder S. T. Structural and Thermal Response of 30 cm Diameter Ion Thruster optics. AIAA Paper. 89–2719 July 1989.
  3. Pollard J. E., Welle R. P. Thrust Vector Measurements with the T5 Ion Engine. AIAA Paper. 95–2829, July 1995.
  4. Soulas G. C., Frandina M. M. Ion Engine Grid Gap Measurements. 40th Joint Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE, and ASEE Fort Lauderdale. Florida. July 11–14, 2004.
  5. Soulas G. C., Diaz E. M. Grid Gap Measurement for an NSTAR Ion Thruste. 29th International Electric Propulsion Conference. Princeton University. October 31 – November 4, 2005
  6. Yuan J., Dai P., Liang D., Zhou S., Xiao S., Liang X. Grid deformation real-time measurement system of ion thruster based on videometrics. Appl. Sci. 2019; 9: 1759. doi: 10.3390/app9091759
  7. Sun M., Long J., Geng H., Chen X. Thermal deformation analysis and measurement of the triple grid for a 30cm diameter ion thruster. PREPRINT (Version 1) available at Research Square. – 03 October 2022. https://doi.org/10.21203/rs.3.rs-2106649/v1
  8. Zav’yalov P.S., Vlasov E. V., Gushchina A. A., Sokolov E. V., Sartakov V. YU. Optiko-elektronnaya sistema beskontaktnogo kontrolya geometricheskih parametrov bronebojnyh serdechnikov i pul’. Datchiki i sistemy. 2018; 10(229): 34–39. Завьялов П. С., Власов Е. В., Гущина А. А., Соколов Е. В., Сартаков В. Ю. Оптико-электронная система бесконтактного контроля геометрических параметров бронебойных сердечников и пуль. Датчики и системы. 2018; 10(229): 34–39.
  9. Zhimuleva, E.S., Zavyalov P. S., Kravchenko M. S. Development of Telecentric Objectives for Dimensional Inspection Systems. Optoelectronics, Instrumentation and Data Processing. 2018; 54(1): 52–60. doi: 10.3103/S8756699018010090.
  10. Gurenko V. M., Kastorsky L. B., Kiryanov V. P., Kiryanov A. V., Kokarev S. A., Vedernikov V. M., Verkhogliad A. G. Laser writing system CLWS-300/C-M for the microstructures synthesis on the axisymmetric 3-D surfaces // Proceedings of SPIE – The International Society for Optical Engineering: Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, 09–13.09.2002. SPIE, SPIE Russia Chapter, OSA, ISTC, MIST; editors: Y. V. Chugui, S. N. Bagayev, A. Weckenmann, P. H. Osanna. Novosibirsk.2002; 4900:320–325. doi: 10.1117/12.484573.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Optical and mechanical unit diagram

Download (76KB)
3. Fig. 2. Telecentric lens of the GPNMS: a) optical circuit with the ray path, b) circles of confusion, c) curvature of field and distortion (wavelengths: 0.486, 0.588, 0.656 µm)

Download (674KB)
4. Fig. 3. Images on the GPNMS digital matrix during calibration: a) calibration using a mask work, b) calibration using a standard sample

Download (266KB)
5. Fig. 4. 3D model of the GPNMS: 1 – illuminator, 2 – recorder, 3 – frame, 4 – ion thruster grid assembly, 5 – pins, 6 – protective plates, 7 – vacuum-tight tube for cable output, 8 – telecentric lens, 9 – digital matrix, 10 – stepper drive

Download (126KB)
6. Fig. 5. Photograph of the GPNMS

Download (249KB)
7. Fig. 6. An example of a pin image on a matrix

Download (70KB)

Copyright (c) 2024 Zavialov P.S., Vlasov E.V., Beloborodov A.V., Kravchenko M.S., Gutschina A.A., Skokov D.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies