Evaluation of the Use of LED Lighting in Combination with the Use of γ-PGA SAP Peptide on the Growth and Development of Peppermint Plants in a Closed Biosystem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article shows the possibility of regulating the biomass and productivity of Mentha piperita L. when grown in a closed Synergotron system. The results of the influence of modulation of light cultivation parameters and the use of treatments with low concentrations of the peptide due to changes in the intensity of growth and the formation of vegetative mass are presented. It has been established that the closed system makes it possible to identify subtle mechanisms of changes in plants and their morphology and metabolism when using the vegetation indices GLI, EXG, VARI and traditional criteria for assessing productivity, opening up new opportunities in the development of modern approaches in the biotechnology of essential oil plants.

Full Text

Restricted Access

About the authors

O. V. Shelepova

Main Botanical Garden of N. V. Tsitsin of the Russian Academy of Sciences

Author for correspondence.
Email: photonics@technosphera.ru
ORCID iD: 0000-0003-2011-6054

Candidate of Biological Sciences, Leading Researcher

Russian Federation, Moscow

E. N. Baranova

Main Botanical Garden of N. V. Tsitsin of the Russian Academy of Sciences

Email: photonics@technosphera.ru
ORCID iD: 0000-0001-8169-9228

Candidate of Biological Sciences, Leading Researcher

Russian Federation, Moscow

K. A. Sudarikov

ANO Institute for Development Strategy; Timiryazev Moscow Agricultural Academy Russian State Agrarian University

Email: photonics@technosphera.ru
ORCID iD: 0009-0005-8734-1223

Research Engineer

Russian Federation, Moscow; Moscow

L. S. Olekhnovich

Main Botanical Garden of N. V. Tsitsin of the Russian Academy of Sciences

Email: photonics@technosphera.ru

Candidate of Biological Sciences, Researcher

Russian Federation, Moscow

L. N. Konovalova

Main Botanical Garden of N. V. Tsitsin of the Russian Academy of Sciences

Email: photonics@technosphera.ru

Researcher

Russian Federation, Moscow

V. V. Latushkin

ANO Institute for Development Strategy; Timiryazev Moscow Agricultural Academy Russian State Agrarian University

Email: photonics@technosphera.ru
ORCID iD: 0000-0003-1406-8965

Candidate of Biological Sciences, Researcher

Russian Federation, Moscow; Moscow

A. A. Gulevich

All-Russian Research Institute of Agricultural Biotechnology

Email: photonics@technosphera.ru
ORCID iD: 0000-0003-4399-2903

Candidate of Biological Sciences, Leading Researcher

Russian Federation, Moscow

P. A. Vernik

ANO Institute for Development Strategy

Email: photonics@technosphera.ru
ORCID iD: 0000-0001-5850-7654

Leading Researcher

Russian Federation, Moscow

References

  1. Shelepova O. V., Baranova E. N., Tkacheva E. V., Evdokimenkova Y.B, Ivanovskii A. A., Konovalova L. N., Gulevich A. A. Aromatic Plants Metabolic Engineering: A review. Agronomy, 2022, 12, 3131. doi: 10.3390/agronomy12123131
  2. Malysheva A. G., Shelepova O. V., Yudin S. M. Transformation of the component structure of essential oil and volatile allocation of plants under the impact of artificial lighting. Gigiena i Sanitariya.2019; 98(11): 1228–1234. doi: 10.18821/0016-9900-2019-98-11-1228-1234. Малышева А. Г, Шелепова О. В., Юдин С. М. Трансформация компонентного состава эфирного масла и летучих выделений растений под влиянием искусственного освещения. Гигиена и санитария. 2019;98(11):1228–1234. doi: 10.18821/0016-9900-2019-98-11-1228-1234).
  3. Gupta S., Kumar A., Gupta A. K., Jnanesha A. C. et al. Industrial mint crop revolution, new opportunities, and novel cultivation ambitions: A review. Ecological Genetics and Genomics. 2023; 27: 100174. https://doi.org/10.1016/j.egg.2023.100174.
  4. Sharma A., Hazarika M., Heisnam P. et al. Controlled Environment Ecosystem: A plant growth system to combat climate change through soilless culture. Crop Design. 2024; 3: 100044. https://doi.org/10.1016/j.cropd.2023.100044
  5. Al Murad M., Razi K., Jeong B. R. et al. Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability. 2021; 13(4): 1985. doi: 10.3390/su13041985
  6. Nájera C., Gallegos-Cedillo V.M., Ros M., Pascual J. A. Role of spectrum-light on productivity, and plant quality over vertical farming systems: bibliometric analysis. Horticulturae. 2023; 9(1): 63. https://doi.org/10.3390/horticulturae9010063
  7. Sena S., Soni Kumari S., Kumar V., Husen A. Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology. 2024; 7: 100184. https://doi.org/10.1016/j.crbiot.2024.100184
  8. Paradiso R., Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation, 2022; 41(2): 742–780. doi: 10.1007/s00344-021-10337-y
  9. Liu R. H. Health-Promoting Components of Fruits and Vegetables in the Diet. Advances in Nutrition. 2013; 4(3): 384S-392S. https://doi.org/10.3945/an.112.003517
  10. Ahmed H. A., Yu-Xin T., Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a review. South African Journal of Botany. 2020; 130: 75–89.
  11. Miao Y., Chen Q., Qu M., Gao L., Hou L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants Scientia Horticulturae. 2019; 257: 108680. https://doi.org/10.1016/j.scienta.2019.108680
  12. Zha L., Liu W., Yang Q. et al. Regulation of ascorbate accumulation and metabolism in lettuce by the red: blue ratio of continuous light using LEDs. Frontiers in Plant Science. 2020; 11.
  13. Wong C. E., Teo Z. W.N., L. Shen L. H. Yu Seeing the lights for leafy greens in indoor vertical farming. Trends Food Science and Technology. 2020; 106: 48–63. 10.1016/j.tifs.2020.09.031
  14. Boros I. F., Székely G., Balázs L., Csambalik L., Sipos L. Effects of LED lighting environments on lettuce (Lactuca sativa L.) in PFAL systems – A review. Scientia Horticulturae. 2023; 321: 112351. https://doi.org/10.1016/j.scienta.2023.112351
  15. Wu B.-S., Mansoori M., Schwalb M. et al. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters. Journal of Photochemistry and Photobiology B: Biology. 2024; 256: 112939. https://doi.org/10.1016/j.jphotobiol.2024.112939
  16. Nozue H., Gomi M. Usefulness of broad-spectrum white LEDs to envision future plant factory T. Kozai (Ed.), Smart Plant Factory: The Next Generation Indoor Vertical Farms, Springer, Singapore (2018), pp. 197–210, https://doi.org/10.1007/978-981-13-1065-2_13
  17. Lee M.-J., Park S.-Y., Oh M.-M. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Horticultural and Environmental Biotechnology. 2015; 56: 186–194. https://doi.org/10.1007/s13580-015-0130-1
  18. Thilini Deepashika Perera W.P, Navaratne S., Wickramasinghe I. Impact of spectral composition of light from light-emitting diodes (LEDs) on postharvest quality of vegetables: a review. Postharvest Biology and Technology. 2022; 191: 111955.
  19. Metallo R. M., Kopsell D. A., Sams C. E., Bumgarner N. R. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Scientia Horticulturae. 2018; 235: 189–197. https://doi.org/10.1016/j.scienta.2018.02.061
  20. Gao S., Wang K., Li N. et al. The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing. Environmental and Experimental Botany. 2022; 197: 104835. https://doi.org/10.1016/j.envexpbot.2022.104835
  21. Sasani M., Ahmadzade M., Besharati H., Mirzadi Gohari A. Optimization of gamma polyglutamic acid (γ-PGA) production by Bacillus velezensis and its effect on increasing wheat growth and biocontrol of Bipolaris sorokiniana causal agent of common root rot of wheat. Biological Control of Pests and Plant Diseases, 2022, 11(2), 69–82. https://doi.org/10.22059/JBIOC.2023.364379.322
  22. Wang, Z.; Yang, R.; Liang, Y.; Zhang, S.; Zhang, Z.; Sun, C.; Yang, Q. Comparing efficacy of different biostimulants for hydroponically grown lettuce (Lactuca sativa L.). Agronomy. 2022; 12(4): 786. doi: 10.3390/agronomy12040786
  23. Guo J., Zhang J., Zhang K., Li S., Zhang Y. Effect of γ-PGA and γ-PGA SAP on soil microenvironment and the yield of winter wheat. Plos one, 2023, 18(7), e0288299. doi: 10.1371/journal.pone.0288299
  24. Gitelson A. A., Kaufman Y. J., Stark R., Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing Environment. 2002, 80, 76–87.
  25. Woebbecke D. M., Meyer G. E., VonBargen K., Mortensen D. A. Color indicators for weed identification under various soil, residue, and lighting conditions. Transactions ASAE 1995; 38: 259–269.
  26. Louhaichi M., Borman M. M., Johnson D. E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 2001; 16: 65–70.
  27. Baranova E. N.; Kononenko N. V.; Lapshin P. V.; Nechaev T. L. et al. Superoxide Dismutase Premodulates Oxidative Stress in Plastids for Protection of Tobacco Plants from Cold Damage Ultrastructure Damage. International Journal of Molecular Sciences. 2024; 25(10): 5544. doi: 10.3390/ijms25105544
  28. Baranova E. N., Shelepova O. V., Zolotukhina A. A., Nesterov G. V., Sudarikov K. A., Latushkin V. V., Gulevich A. A. Application of optical methods for assessing physiological damage to wheat flag leaves. Photonics Russia. 2024; 18(4): 320–330. doi: 10.22184/1993-7296.FRos.2024.18.4.320.330 Баранова Е. Н., Шелепова О. В., Золотухина А. А., Нестеров Г. В., Судариков К. А., Латушкин В. В., Гулевич А. А. Применение оптических методов для оценки физиологических повреждений флаговых листьев пшеницы. Фотоника. 2024; 18(4): 320–330. doi: 10.22184/1993-7296.FRos.2024.18.4.320.330
  29. Shelepova O. V.; Olekhnovich L. S., Konovalova L. N., Khusnetdinova T. I., Gulevich A. A., Baranova E. N. Assessment of essential oil yield in three mint species in the climatic conditions of Central Russia. Agronomy Research, 2021, 19(4), 1970–1980. doi: 10.15159/AR.21.113

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spectral characteristics of LED irradiators when growing plants in synergotron chambers (full spectrum)

Download (1MB)
3. Fig. 2. Spectral characteristics of LED irradiators when growing plants in synergotron chambers (white spectrum)

Download (1MB)
4. Fig. 3. Peculiarities of mint development when using two types of LED lighting (white light (W I and W II) and light with a narrow-band spectrum simulating natural light (F I and F II)) with daylight hours of 16/8 and temperature conditions of 26/22 °C in combination using γ-PGA SAP peptide (F II and W II) on the growth and development of peppermint plants in a closed system – the Synergotron ISR11.02.140 module

Download (5MB)
5. Fig. 4. Histograms of evaluation indices of mint plants using two types of LED lighting (white light – W I and W II, and narrow-band spectral light simulating natural light – F I and F II) with daylight hours of 16/8 and temperature conditions of 26/22 °C in combined with the use of γ-PGA SAP peptide (F II and W II) with trend lines

Download (852KB)

Copyright (c) 2024 Shelepova O.V., Baranova E.N., Sudarikov K.A., Olekhnovich L.S., Konovalova L.N., Latushkin V.V., Vernik P.A., Gulevich A.A.