Источники одиночных фотонов. Обзор. Часть 2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В данном обзоре рассматриваются различные способы создания однофотонных источников (ИОФ). Задача генерации одиночных фотонов может решаться разными способами, и на текущий момент среди них нет такого, который был бы существенно предпочтителен.

В первой части обзора обсуждались требования к однофотонным источникам и критерии характеризации источников. В первую часть обзора вошли источники одиночных фотонов на основе одиночных ионов и на основе одиночных атомов.

Во второй части рассмотрены ИОФ на квантовых точках и на центрах окраски в кристаллах.

Полный текст

Доступ закрыт

Об авторах

В. Г. Криштоп

Институт проблем технологии микроэлектроники РАН; АО «ИнфоТеКС»; Московский физико-технический институт

Автор, ответственный за переписку.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Россия, г. Черноголовка, Моск. обл.; Москва; г. Долгопрудный, Моск. обл.

Список литературы

  1. P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotech. 2017;12: 1026–1039. https://doi.org/10.1038/nnano.2017.218
  2. K. D. Zeuner, K. D. Jöns, L. Schweickert, C. R. Hedlund, C. N. Lobato, T. Lettner, K. Wang, S. Gyger, E. Schöll, S. Steinhauer, M. Hammar, V. Zwiller. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics. 2021; 8: 2337–2344. https://doi.org/10.1021/acsphotonics.1c00504
  3. J. Kim, O. Benson, H. Kan, Y. Yamamoto. A single-photon turnstile device. Nature. 1999; 397: 500. http://dx.doi.org/10.1038/17295
  4. S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105: 141109. https://doi.org/10.1063/1.4897640
  5. X. Lin, X. Dai, C. Pu, Y. Deng, Y. Niu, L. Tong, W. Fang, Y. Jin, X. Peng. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications. 2017; 8: 1132. https://doi.org/10.1038/s41467-017-01379-6
  6. A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996. https://doi.org/10.1126/science.271.5251.933
  7. Y. Arakawa, M. J. Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020; 7(2): 021309. https://doi.org/10.1063/5.0010193
  8. R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10(6): 639. https://doi.org/10.3390/photonics10060639
  9. T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett. 2016; 109(13): 132106. https://doi.org/10.1063/1.4961888
  10. A. Musiał, P. Holewa, P. Wyborski, M. Syperek, A. Kors, J. P. Reithmaier, G. Sęk, M. Benyoucef. High-purity triggered single-photon emission from symmetric single InAs/InP quantum dots around the telecom C-band window. Adv. Quantum Technol. 2019; 3(2): 1900082. https://doi.org/10.1002/qute.201900082
  11. Ł. Dusanowski, M. Syperek, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, G. Sęk. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl. Phys. Lett. 2016; 108(16): 163108. https://doi.org/10.1063/1.4947448
  12. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.-Y. Lu, J.-W. Pan. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology. 2013; 8(3): 213–217. https://doi.org/10.1038/nnano.2012.262
  13. Ł. Dusanowski, P. Holewa, A. Maryński, A. Musiał, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, J. Misiewicz, S. Reitzenstein, G. Sęk. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot. Optics Express. 2017; 25(25): 31122. https://doi.org/10.1364/oe.25.031122
  14. R. P. Mirin. Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot. Appl. Phys. Lett. 2004; 84(8): 1260–1262. https://doi.org/10.1063/1.1650032
  15. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, N. Gisin. Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett. 2006; 88(13): 131102. https://doi.org/10.1063/1.2190466
  16. L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 2018; 112(9): 093106. https://doi.org/10.1063/1.5020038
  17. L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, S. Sanguinetti. High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 2012; 100(23), 231112. https://doi.org/10.1063/1.4726189
  18. P. Yu, Z. Li, T. Wu, Y.-T. Wang, X. Tong, C.-F. Li, Z. Wang, S.-H. Wei, Y. Zhang, H. Liu, L. Fu, Y. Zhang, J. Wu, H. H. Tan, C. Jagadish, Z. M. Wang. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano. 2019; 13(11): 13492–13500. https://doi.org/10.1021/acsnano.9b07204
  19. V. Zwiller, T. Aichele, W. Seifert, J. Persson, O. Benson. Generating visible single photons on demand with single InP quantum dots. Appl. Phys. Lett. 2003; 82(10): 1509–1511. https://doi.org/10.1063/1.1558952
  20. M. Wiesner, W.-M. Schulz, C. Kessler, M. Reischle, S. Metzner, F. Bertram, J. Christen, R. Roßbach, M. Jetter, P. Michler. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001). Nanotechnology. 2012; 23(33): 335201. https://doi.org/10.1088/0957-4484/23/33/335201
  21. A. Ugur, S. Kremling, F. Hatami, S. Höfling, L. Worschech, A. Forchel, W. T. Masselink. Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots. Appl. Phys. Lett. 2012; 100(2): 023116. https://doi.org/10.1063/1.3676273
  22. A. Tribu, G. Sallen, T. Aichele, R. André, J.-P. Poizat, C. Bougerol, S. Tatarenko, K. Kheng. A high-temperature single-photon source from nanowire quantum dots. Nano Letters. 2008; 8(12): 4326–4329. https://doi.org/10.1021/nl802160z
  23. S. Bounouar, M. Elouneg-Jamroz, M. I. Den Hertog, C. Morchutt, E. Bellet-Amalric, R. André, C. Bougerol, Y. Genuist, J.-P. Poizat, S. Tatarenko, K. Kheng. Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Letters. 2012; 12(6): 2977–2981. https://doi.org/10.1021/nl300733f
  24. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, A. Forchel. Single-photon emission of CdSe quantum dots at temperatures up to 200K. Appl. Phys. Lett. 2002; 81: 2920. https://doi.org/10.1063/1.1515364
  25. W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe/MgS semiconductor quantum dot. Physica Status Solidi C. 2014; 11(7–8): 1256–1259. https://doi.org/10.1002/pssc.201300627
  26. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, T. Kummell. Room temperature single photon emission from an epitaxially grown quantum dot. Appl. Phys. Lett. 2012; 100(6): 061114. https://doi.org/10.1063/1.3683498
  27. W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K. Appl. Phys. Lett. 2014; 105(9): 091102. https://doi.org/10.1063/1.4894729
  28. M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, O. G. Schmidt. Wavelength tunable triggered single-photon source from a single CdTe quantum dot on silicon substrate. Nano Letters. 2009; 9(1): 304–307. https://doi.org/10.1021/nl802948a
  29. J.-H. Cho, Y. M. Kim, S.-H. Lim, H.-S. Yeo, S. Kim, S. Gong, Y.-H. Cho. Strongly coherent single-photon emission from site-controlled InGaN quantum dots embedded in GaN nanopyramids. ACS Photonics. 2018; 5: 439. https://doi.org/10.1021/acsphotonics.7b00922
  30. H. P. Springbett, J. Jarman, T. Zhu, M. Holmes, Y. Arakawa, R. A. Oliver. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl. Phys. Lett. 2018; 113(10): 101107. https://doi.org/10.1063/1.5045843
  31. S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105(14): 141109. https://doi.org/10.1063/1.4897640
  32. M. Arita, F. L. Roux, M. J. Holmes, S. Kako, Y. Arakawa. Ultraclean single photon emission from a GaN Quantum dot. Nano Letters. 2017; 17(5): 2902–2907. https://doi.org/10.1021/acs.nanolett.7b00109
  33. M. J. Holmes, S. Kako, K. Choi, M. Arita, Y. Arakawa. Single photons from a hot solid-state emitter at 350K. ACS Photonics. 2016; 3(4), 543–546. https://doi.org/10.1021/acsphotonics.6b00112
  34. S. Kako, M. Holmes, S. Sergent, M. Bürger, D. J. As, Y. Arakawa. Single-photon emission from cubic GaN quantum dots. Appl. Phys. Lett. 2014; 104(1): 011101. https://doi.org/10.1063/1.4858966
  35. M. Gurioli, Z. Wang, A. Rastelli, T. Kuroda, S. Sanguinetti. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nature Materials. 2019; 18 (8): 799–810. https://doi.org/10.1038/s41563-019-0355-y
  36. L. Zhai, M. C. Löbl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig, R. J. Warburton. Low-noise GaAs quantum dots for quantum photonics. Nature Communications. 2020; 11(1): 4745. https://doi.org/10.1038/s41467-020-18625-z
  37. P. Herve, L.K.J. Vandamme. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology. 1994; 35 (4): 609–615. https://doi.org/10.1016/1350-4495(94)90026-4
  38. S. Reitzenstein, A. Forchel. Quantum dot micropillars. Journal of Physics D: Applied Physics. 2010; 43 (3): 033001. https://doi.org/10.1088/0022-3727/43/3/033001
  39. А. И. Галимов, М. В. Рахлин, Г. В. Климко, Ю. М. Задиранов, Ю. А. Гусева, С. И. Трошков, Т. В. Шубина, А. А. Торопов. Источник неразличимых одиночных фотонов на основе эпитаксиальных InAs/GaAs квантовых точек для интеграции в схемы квантовых вычислений. Письма в ЖЭТФ. 2021; 113(4); 248–255. https://doi.org/10.31857/S1234567821040054
  40. N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nature Nanotechnology. 2021; 16 (4): 399–403. https://doi.org/10.1038/s41565-020-00831-x
  41. D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature. 2019; 575 (7784): 622–627. https://doi.org/10.1038/s41586-019-1709-y
  42. F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. C. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13 (9): 835–840. https://doi.org/10.1038/s41565-018-0188-x
  43. R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl. Scalable integrated single-photon source. Science Advances. 2020; 6(50): eabc8268. https://doi.org/10.1126/sciadv.abc8268
  44. U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, P. Michler. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Appl. Phys. Lett. 2015; 107 (2): 021101. https://doi.org/10.1063/1.4926729
  45. 72. R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10: 639. https://doi.org/10.3390/photonics10060639
  46. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nature Photonics. 2016; 10: 340–345. https://doi.org/10.1038/nphoton.2016.23
  47. T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.-H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein. A bright triggered twin-photon source in the solid state. Nature Communications. 2017; 8:14870. https://doi.org/10.1038/ncomms14870
  48. M. Moczała-Dusanowska, Ł. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, S. Höfling. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photonics. 2020; 7: 3474–3480. https://doi.org/10.1021/acsphotonics.0c01465
  49. X. Li, S. Liu, Y. Wei, J. Ma, C. Song, Y. Yu, R. Su, W. Geng, H. Ni, H. Liu, X. Su, Z. Niu, Y.-L. Chen, J. Liu. Bright semiconductor single-photon sources pumped by heterogeneously integrated micropillar lasers with electrical injections. Light Sci. Appl. 2023; 12: 65. https://doi.org/10.1038/s41377-023-01110-9
  50. F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13: 835–840. https://doi.org/10.1038/s41565-018-0188-x
  51. A. Komarovskikh, V. Nadolinny, V. Plyusnin, Y. Palyanov, M. Rakhmanova. Photoluminescence of HPHT diamonds synthesized in the Mg-Ge-C system. Diamond and Related Materials. 2017; 79:145–149. https://doi.org/10.1016/j.diamond.2017.09.012
  52. A. M. Zaitsev. Optical properties of diamond: a data handbook. Springer: Berlin, New York. 2001. https://doi.org/10.1007/978-3-662-04548-0
  53. A. M. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B. 2000; 61:12909–12922. https://doi.org/10.1103/PhysRevB.61.12909
  54. I. Aharonovich, A. D. Greentree, S. Prawer. Diamond photonics. Nature Photonics. 2011; 5: 397–405. https://doi.org/10.1038/nphoton.2011.54
  55. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J.-F. Roch. Room temperature triggered single-photon source in the near infrared. New J. Phys. 2007; 9: 434–434. https://doi.org/10.1088/1367-2630/9/12/434
  56. R. Nelz, J. Görlitz, D. Herrmann, A. Slablab, M. Challier, M. Radtke, M. Fischer, S. Gsell, M. Schreck, C. Becher, E. Neu. Toward wafer-scale diamond nano- and quantum technologies. APL Materials. 2019; 7: 011108. https://doi.org/10.1063/1.5067267
  57. S. D. Trofimov, S. A. Tarelkin, S. V. Bolshedvorskii, V. S. Bormashov, S. Yu. Troshchiev, A. V. Golovanov, N. V. Luparev, D. D. Prikhodko, K. N. Boldyrev, S. A. Terentiev, A. V. Akimov, N. I. Kargin, N. S. Kukin, A. S. Gusev, A. A. Shemukhin, Y. V. Balakshin, S. G. Buga, V. D. Blank. Spatially controlled fabrication of single NV centers in IIa HPHT diamond. Opt. Mater. Express. 2020; 10: 198. https://doi.org/10.1364/OME.10.000198
  58. J. Achard, V. Jacques, A. Tallaire. CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics. 2020; 53: 313001. https://doi.org/10.1088/1361-6463/ab81d1
  59. R. P. Mildren, J. R. Rabeau et al. Optical Engineering of Diamond. – Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim. Germany. 2013. https://doi.org/10.1002/9783527648603
  60. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, J. Wrachtrup. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling. Review of Scientific Instruments. 2014; 85: 123703. https://doi.org/10.1063/1.4902818
  61. A. V. Golovanov, V. S. Bormashov, N. V. Luparev, S. A. Tarelkin, S. Y. Troschiev, S. G. Buga, V. D. Blank. Diamond Microstructuring by Deep Anisotropic Reactive Ion Etching. Physica Status Solidi (a). 2018;215: 1800273. https://doi.org/10.1002/pssa.201800273
  62. Z. Liu, T.-F. Zhu, Y.-F. Wang, I. Ahmed, Z. Liu, F. Wen, X. Zhang, W. Wang, S. Fan, K. Wang, H.-X. Wang. Fabrication of Diamond Submicron Lenses and Cylinders by ICP Etching Technique with SiO2 Balls Mask. Materials. 2019; 12: 1622. https://doi.org/10.3390/ma12101622
  63. T.-Y. Huang, R. R. Grote, S. A. Mann, D. A. Hopper, A. L. Exarhos, G. G. Lopez, G. R. Kaighn, E. C. Garnett, L. C. Bassett. A monolithic immersion metalens for imaging solid-state quantum emitters. Nature Communicatons. 2019; 10: 2392. https://doi.org/10.1038/s41467-019-10238-5
  64. A. M. Romshin, A. V. Gritsienko, A. S. Ilin, R. K. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Enhancing single-photon emission of silicon-vacancy centers in nanodiamonds by a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023; 16 (1.3): 135–139. https://doi.org/10.18721/JPM.161.323
  65. A. Romshin, A. Gritsenko, P. Lega, A. Orlov, A. Ilin, A. Martyanov, V. Sedov, I. Vlasov, A. Vitukhnovsky. Effectively enhanced emission from silicon-vacancy centers in a hybrid diamond-in-pit microstructure. Laser Physics Letters. 2022; 20(1): 015206. https://doi.org/10.1088/1612-202X/acabcd
  66. A. A. Zhivopistsev, A. M. Romshin, A. V. Gritsienko, P. V. Lega, R. Kh. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Single photon emission of “silicon-vacancy” centers in nanodiamonds placed in cylindrical pits on a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024; 17(1):100–104. https://doi.org/10.18721/JPM.171.116
  67. D. Yu. Fedyanin, M. Agio. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New Journal of Physics. 2016; 18: 073012. http://iopscience.iop.org/article/10.1088/1367-2630/18/7/073012
  68. I. A. Khramtsov, M. Agio, D. Yu. Fedyanin. Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 2017; 8: 024031. https://doi.org/10.1103/PhysRevApplied.8.024031
  69. I. A. Khramtsov, D. Y. Fedyanin. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Phys. Rev. Appl. 2019; 12: 024013. https://doi.org/10.1103/physrevapplied.12.024013
  70. D. Timerkaeva, C. Attaccalite, G. Brenet, D. Caliste, P. Pochet. Structural, electronic, and optical properties of the C–C complex in bulk silicon from first principles. J. Appl. Phys. 2018; 123(16): 161421. https://doi.org/10.1063/1.5010269
  71. M. Hollenbach, Y. Berencén, U. Kentsch, M. Helm, G. V. Astakhov. Engineering telecom single-photon emitters in silicon for scalable quantum photonics. Optics Express. 2020; 28(18): 26111–26121. https://doi.org/10.1364/OE.397377
  72. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. A silicon carbide room-temperature single-photon source. Nature Materials. 2013; 13: 151–156. https://doi.org/10.1038/nmat3806
  73. F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, V. Dyakonov. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Scientific Reports. 2013; 3:1637. https://doi.org/10.1038/srep01637
  74. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G. V. Astakhov. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nature Communications. 2015; 6(1): 7578. https://doi.org/10.1038/ncomms8578
  75. G. Calusine, A. Politi, D. D. Awschalom. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 2014; 105: 011123. https://doi.org/10.1063/1.4890083
  76. I. Aharonovich, S. Castelletto, D. A. Simpson, A. D. Greentree, S. Prawer. Photophysics of chromium-related diamond single-photon emitters. Phys. Rev. A. 2010; 81: 043813. https://doi.org/10.1103/PhysRevA.81.043813

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 8. Квантовые точки с резонаторами [72]: а) – одиночная квантовая точка, встроенная в микростолбик с брэгговскими зеркалами; b) – схема электрически управляемых однофотонных источников: микростолбик, содержащий квантовую точку, соединен с окружающей круглой рамкой четырьмя одномерными проводами [109]; c) –твердотельный квантовый источник света, состоящий из одиночной квантовой тоски, интегрированной в монолитную микролинзу [110]; d) – эскиз однофотонного источника с пьезоэлектрически перестраиваемым резонатором CBG, состоящего из мембраны GaAs толщиной 125 нм с квантовыми точками In (Ga)As, слоя SiO2 толщиной 360 нм и отражающего золотого зеркала, прикрепленного к пьезоподложке [111]; e) – яркий полупроводниковый однофотонный источник с накачкой гетерогенными интегрированными микростолбиковыми лазерами [112]; f) – однофотонные источники с фотонно-кристаллическими резонаторами QD-H1, связанными с волноводом [113]

Скачать (432KB)
3. Рис. 9. Схематическое изображение ТМ-центра в алмазе [114]

Скачать (113KB)
4. Рис. 10. Схематическое изображение эффекта полного внутреннего отражения

Скачать (110KB)
5. Рис. 11. Иммерсионная микролинза на поверхности алмаза [123]

Скачать (135KB)
6. Рис. 12. Иммерсионная металинза на основе френелевской оптики с наноструктурированой поверхностью [126]

Скачать (168KB)

© Криштоп В.Г., 2024