Источники одиночных фотонов. Обзор. Часть 2
- Авторы: Криштоп В.Г.1,2,3
-
Учреждения:
- Институт проблем технологии микроэлектроники РАН
- АО «ИнфоТеКС»
- Московский физико-технический институт
- Выпуск: Том 18, № 8 (2024)
- Страницы: 610-620
- Раздел: Квантовые технологии
- URL: https://journals.eco-vector.com/1993-7296/article/view/646031
- DOI: https://doi.org/10.22184/1993-7296.FROS.2024.18.8.610.620
- ID: 646031
Цитировать
Полный текст



Аннотация
В данном обзоре рассматриваются различные способы создания однофотонных источников (ИОФ). Задача генерации одиночных фотонов может решаться разными способами, и на текущий момент среди них нет такого, который был бы существенно предпочтителен.
В первой части обзора обсуждались требования к однофотонным источникам и критерии характеризации источников. В первую часть обзора вошли источники одиночных фотонов на основе одиночных ионов и на основе одиночных атомов.
Во второй части рассмотрены ИОФ на квантовых точках и на центрах окраски в кристаллах.
Полный текст

Об авторах
В. Г. Криштоп
Институт проблем технологии микроэлектроники РАН; АО «ИнфоТеКС»; Московский физико-технический институт
Автор, ответственный за переписку.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Россия, г. Черноголовка, Моск. обл.; Москва; г. Долгопрудный, Моск. обл.
Список литературы
- P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotech. 2017;12: 1026–1039. https://doi.org/10.1038/nnano.2017.218
- K. D. Zeuner, K. D. Jöns, L. Schweickert, C. R. Hedlund, C. N. Lobato, T. Lettner, K. Wang, S. Gyger, E. Schöll, S. Steinhauer, M. Hammar, V. Zwiller. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics. 2021; 8: 2337–2344. https://doi.org/10.1021/acsphotonics.1c00504
- J. Kim, O. Benson, H. Kan, Y. Yamamoto. A single-photon turnstile device. Nature. 1999; 397: 500. http://dx.doi.org/10.1038/17295
- S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105: 141109. https://doi.org/10.1063/1.4897640
- X. Lin, X. Dai, C. Pu, Y. Deng, Y. Niu, L. Tong, W. Fang, Y. Jin, X. Peng. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications. 2017; 8: 1132. https://doi.org/10.1038/s41467-017-01379-6
- A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996. https://doi.org/10.1126/science.271.5251.933
- Y. Arakawa, M. J. Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020; 7(2): 021309. https://doi.org/10.1063/5.0010193
- R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10(6): 639. https://doi.org/10.3390/photonics10060639
- T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett. 2016; 109(13): 132106. https://doi.org/10.1063/1.4961888
- A. Musiał, P. Holewa, P. Wyborski, M. Syperek, A. Kors, J. P. Reithmaier, G. Sęk, M. Benyoucef. High-purity triggered single-photon emission from symmetric single InAs/InP quantum dots around the telecom C-band window. Adv. Quantum Technol. 2019; 3(2): 1900082. https://doi.org/10.1002/qute.201900082
- Ł. Dusanowski, M. Syperek, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, G. Sęk. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl. Phys. Lett. 2016; 108(16): 163108. https://doi.org/10.1063/1.4947448
- Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.-Y. Lu, J.-W. Pan. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology. 2013; 8(3): 213–217. https://doi.org/10.1038/nnano.2012.262
- Ł. Dusanowski, P. Holewa, A. Maryński, A. Musiał, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, J. Misiewicz, S. Reitzenstein, G. Sęk. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot. Optics Express. 2017; 25(25): 31122. https://doi.org/10.1364/oe.25.031122
- R. P. Mirin. Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot. Appl. Phys. Lett. 2004; 84(8): 1260–1262. https://doi.org/10.1063/1.1650032
- C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, N. Gisin. Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett. 2006; 88(13): 131102. https://doi.org/10.1063/1.2190466
- L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 2018; 112(9): 093106. https://doi.org/10.1063/1.5020038
- L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, S. Sanguinetti. High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 2012; 100(23), 231112. https://doi.org/10.1063/1.4726189
- P. Yu, Z. Li, T. Wu, Y.-T. Wang, X. Tong, C.-F. Li, Z. Wang, S.-H. Wei, Y. Zhang, H. Liu, L. Fu, Y. Zhang, J. Wu, H. H. Tan, C. Jagadish, Z. M. Wang. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano. 2019; 13(11): 13492–13500. https://doi.org/10.1021/acsnano.9b07204
- V. Zwiller, T. Aichele, W. Seifert, J. Persson, O. Benson. Generating visible single photons on demand with single InP quantum dots. Appl. Phys. Lett. 2003; 82(10): 1509–1511. https://doi.org/10.1063/1.1558952
- M. Wiesner, W.-M. Schulz, C. Kessler, M. Reischle, S. Metzner, F. Bertram, J. Christen, R. Roßbach, M. Jetter, P. Michler. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001). Nanotechnology. 2012; 23(33): 335201. https://doi.org/10.1088/0957-4484/23/33/335201
- A. Ugur, S. Kremling, F. Hatami, S. Höfling, L. Worschech, A. Forchel, W. T. Masselink. Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots. Appl. Phys. Lett. 2012; 100(2): 023116. https://doi.org/10.1063/1.3676273
- A. Tribu, G. Sallen, T. Aichele, R. André, J.-P. Poizat, C. Bougerol, S. Tatarenko, K. Kheng. A high-temperature single-photon source from nanowire quantum dots. Nano Letters. 2008; 8(12): 4326–4329. https://doi.org/10.1021/nl802160z
- S. Bounouar, M. Elouneg-Jamroz, M. I. Den Hertog, C. Morchutt, E. Bellet-Amalric, R. André, C. Bougerol, Y. Genuist, J.-P. Poizat, S. Tatarenko, K. Kheng. Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Letters. 2012; 12(6): 2977–2981. https://doi.org/10.1021/nl300733f
- K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, A. Forchel. Single-photon emission of CdSe quantum dots at temperatures up to 200K. Appl. Phys. Lett. 2002; 81: 2920. https://doi.org/10.1063/1.1515364
- W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe/MgS semiconductor quantum dot. Physica Status Solidi C. 2014; 11(7–8): 1256–1259. https://doi.org/10.1002/pssc.201300627
- O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, T. Kummell. Room temperature single photon emission from an epitaxially grown quantum dot. Appl. Phys. Lett. 2012; 100(6): 061114. https://doi.org/10.1063/1.3683498
- W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K. Appl. Phys. Lett. 2014; 105(9): 091102. https://doi.org/10.1063/1.4894729
- M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, O. G. Schmidt. Wavelength tunable triggered single-photon source from a single CdTe quantum dot on silicon substrate. Nano Letters. 2009; 9(1): 304–307. https://doi.org/10.1021/nl802948a
- J.-H. Cho, Y. M. Kim, S.-H. Lim, H.-S. Yeo, S. Kim, S. Gong, Y.-H. Cho. Strongly coherent single-photon emission from site-controlled InGaN quantum dots embedded in GaN nanopyramids. ACS Photonics. 2018; 5: 439. https://doi.org/10.1021/acsphotonics.7b00922
- H. P. Springbett, J. Jarman, T. Zhu, M. Holmes, Y. Arakawa, R. A. Oliver. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl. Phys. Lett. 2018; 113(10): 101107. https://doi.org/10.1063/1.5045843
- S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105(14): 141109. https://doi.org/10.1063/1.4897640
- M. Arita, F. L. Roux, M. J. Holmes, S. Kako, Y. Arakawa. Ultraclean single photon emission from a GaN Quantum dot. Nano Letters. 2017; 17(5): 2902–2907. https://doi.org/10.1021/acs.nanolett.7b00109
- M. J. Holmes, S. Kako, K. Choi, M. Arita, Y. Arakawa. Single photons from a hot solid-state emitter at 350K. ACS Photonics. 2016; 3(4), 543–546. https://doi.org/10.1021/acsphotonics.6b00112
- S. Kako, M. Holmes, S. Sergent, M. Bürger, D. J. As, Y. Arakawa. Single-photon emission from cubic GaN quantum dots. Appl. Phys. Lett. 2014; 104(1): 011101. https://doi.org/10.1063/1.4858966
- M. Gurioli, Z. Wang, A. Rastelli, T. Kuroda, S. Sanguinetti. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nature Materials. 2019; 18 (8): 799–810. https://doi.org/10.1038/s41563-019-0355-y
- L. Zhai, M. C. Löbl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig, R. J. Warburton. Low-noise GaAs quantum dots for quantum photonics. Nature Communications. 2020; 11(1): 4745. https://doi.org/10.1038/s41467-020-18625-z
- P. Herve, L.K.J. Vandamme. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology. 1994; 35 (4): 609–615. https://doi.org/10.1016/1350-4495(94)90026-4
- S. Reitzenstein, A. Forchel. Quantum dot micropillars. Journal of Physics D: Applied Physics. 2010; 43 (3): 033001. https://doi.org/10.1088/0022-3727/43/3/033001
- А. И. Галимов, М. В. Рахлин, Г. В. Климко, Ю. М. Задиранов, Ю. А. Гусева, С. И. Трошков, Т. В. Шубина, А. А. Торопов. Источник неразличимых одиночных фотонов на основе эпитаксиальных InAs/GaAs квантовых точек для интеграции в схемы квантовых вычислений. Письма в ЖЭТФ. 2021; 113(4); 248–255. https://doi.org/10.31857/S1234567821040054
- N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nature Nanotechnology. 2021; 16 (4): 399–403. https://doi.org/10.1038/s41565-020-00831-x
- D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature. 2019; 575 (7784): 622–627. https://doi.org/10.1038/s41586-019-1709-y
- F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. C. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13 (9): 835–840. https://doi.org/10.1038/s41565-018-0188-x
- R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl. Scalable integrated single-photon source. Science Advances. 2020; 6(50): eabc8268. https://doi.org/10.1126/sciadv.abc8268
- U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, P. Michler. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Appl. Phys. Lett. 2015; 107 (2): 021101. https://doi.org/10.1063/1.4926729
- 72. R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10: 639. https://doi.org/10.3390/photonics10060639
- N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nature Photonics. 2016; 10: 340–345. https://doi.org/10.1038/nphoton.2016.23
- T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.-H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein. A bright triggered twin-photon source in the solid state. Nature Communications. 2017; 8:14870. https://doi.org/10.1038/ncomms14870
- M. Moczała-Dusanowska, Ł. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, S. Höfling. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photonics. 2020; 7: 3474–3480. https://doi.org/10.1021/acsphotonics.0c01465
- X. Li, S. Liu, Y. Wei, J. Ma, C. Song, Y. Yu, R. Su, W. Geng, H. Ni, H. Liu, X. Su, Z. Niu, Y.-L. Chen, J. Liu. Bright semiconductor single-photon sources pumped by heterogeneously integrated micropillar lasers with electrical injections. Light Sci. Appl. 2023; 12: 65. https://doi.org/10.1038/s41377-023-01110-9
- F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13: 835–840. https://doi.org/10.1038/s41565-018-0188-x
- A. Komarovskikh, V. Nadolinny, V. Plyusnin, Y. Palyanov, M. Rakhmanova. Photoluminescence of HPHT diamonds synthesized in the Mg-Ge-C system. Diamond and Related Materials. 2017; 79:145–149. https://doi.org/10.1016/j.diamond.2017.09.012
- A. M. Zaitsev. Optical properties of diamond: a data handbook. Springer: Berlin, New York. 2001. https://doi.org/10.1007/978-3-662-04548-0
- A. M. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B. 2000; 61:12909–12922. https://doi.org/10.1103/PhysRevB.61.12909
- I. Aharonovich, A. D. Greentree, S. Prawer. Diamond photonics. Nature Photonics. 2011; 5: 397–405. https://doi.org/10.1038/nphoton.2011.54
- E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J.-F. Roch. Room temperature triggered single-photon source in the near infrared. New J. Phys. 2007; 9: 434–434. https://doi.org/10.1088/1367-2630/9/12/434
- R. Nelz, J. Görlitz, D. Herrmann, A. Slablab, M. Challier, M. Radtke, M. Fischer, S. Gsell, M. Schreck, C. Becher, E. Neu. Toward wafer-scale diamond nano- and quantum technologies. APL Materials. 2019; 7: 011108. https://doi.org/10.1063/1.5067267
- S. D. Trofimov, S. A. Tarelkin, S. V. Bolshedvorskii, V. S. Bormashov, S. Yu. Troshchiev, A. V. Golovanov, N. V. Luparev, D. D. Prikhodko, K. N. Boldyrev, S. A. Terentiev, A. V. Akimov, N. I. Kargin, N. S. Kukin, A. S. Gusev, A. A. Shemukhin, Y. V. Balakshin, S. G. Buga, V. D. Blank. Spatially controlled fabrication of single NV centers in IIa HPHT diamond. Opt. Mater. Express. 2020; 10: 198. https://doi.org/10.1364/OME.10.000198
- J. Achard, V. Jacques, A. Tallaire. CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics. 2020; 53: 313001. https://doi.org/10.1088/1361-6463/ab81d1
- R. P. Mildren, J. R. Rabeau et al. Optical Engineering of Diamond. – Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim. Germany. 2013. https://doi.org/10.1002/9783527648603
- M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, J. Wrachtrup. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling. Review of Scientific Instruments. 2014; 85: 123703. https://doi.org/10.1063/1.4902818
- A. V. Golovanov, V. S. Bormashov, N. V. Luparev, S. A. Tarelkin, S. Y. Troschiev, S. G. Buga, V. D. Blank. Diamond Microstructuring by Deep Anisotropic Reactive Ion Etching. Physica Status Solidi (a). 2018;215: 1800273. https://doi.org/10.1002/pssa.201800273
- Z. Liu, T.-F. Zhu, Y.-F. Wang, I. Ahmed, Z. Liu, F. Wen, X. Zhang, W. Wang, S. Fan, K. Wang, H.-X. Wang. Fabrication of Diamond Submicron Lenses and Cylinders by ICP Etching Technique with SiO2 Balls Mask. Materials. 2019; 12: 1622. https://doi.org/10.3390/ma12101622
- T.-Y. Huang, R. R. Grote, S. A. Mann, D. A. Hopper, A. L. Exarhos, G. G. Lopez, G. R. Kaighn, E. C. Garnett, L. C. Bassett. A monolithic immersion metalens for imaging solid-state quantum emitters. Nature Communicatons. 2019; 10: 2392. https://doi.org/10.1038/s41467-019-10238-5
- A. M. Romshin, A. V. Gritsienko, A. S. Ilin, R. K. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Enhancing single-photon emission of silicon-vacancy centers in nanodiamonds by a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023; 16 (1.3): 135–139. https://doi.org/10.18721/JPM.161.323
- A. Romshin, A. Gritsenko, P. Lega, A. Orlov, A. Ilin, A. Martyanov, V. Sedov, I. Vlasov, A. Vitukhnovsky. Effectively enhanced emission from silicon-vacancy centers in a hybrid diamond-in-pit microstructure. Laser Physics Letters. 2022; 20(1): 015206. https://doi.org/10.1088/1612-202X/acabcd
- A. A. Zhivopistsev, A. M. Romshin, A. V. Gritsienko, P. V. Lega, R. Kh. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Single photon emission of “silicon-vacancy” centers in nanodiamonds placed in cylindrical pits on a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024; 17(1):100–104. https://doi.org/10.18721/JPM.171.116
- D. Yu. Fedyanin, M. Agio. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New Journal of Physics. 2016; 18: 073012. http://iopscience.iop.org/article/10.1088/1367-2630/18/7/073012
- I. A. Khramtsov, M. Agio, D. Yu. Fedyanin. Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 2017; 8: 024031. https://doi.org/10.1103/PhysRevApplied.8.024031
- I. A. Khramtsov, D. Y. Fedyanin. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Phys. Rev. Appl. 2019; 12: 024013. https://doi.org/10.1103/physrevapplied.12.024013
- D. Timerkaeva, C. Attaccalite, G. Brenet, D. Caliste, P. Pochet. Structural, electronic, and optical properties of the C–C complex in bulk silicon from first principles. J. Appl. Phys. 2018; 123(16): 161421. https://doi.org/10.1063/1.5010269
- M. Hollenbach, Y. Berencén, U. Kentsch, M. Helm, G. V. Astakhov. Engineering telecom single-photon emitters in silicon for scalable quantum photonics. Optics Express. 2020; 28(18): 26111–26121. https://doi.org/10.1364/OE.397377
- S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. A silicon carbide room-temperature single-photon source. Nature Materials. 2013; 13: 151–156. https://doi.org/10.1038/nmat3806
- F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, V. Dyakonov. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Scientific Reports. 2013; 3:1637. https://doi.org/10.1038/srep01637
- F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G. V. Astakhov. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nature Communications. 2015; 6(1): 7578. https://doi.org/10.1038/ncomms8578
- G. Calusine, A. Politi, D. D. Awschalom. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 2014; 105: 011123. https://doi.org/10.1063/1.4890083
- I. Aharonovich, S. Castelletto, D. A. Simpson, A. D. Greentree, S. Prawer. Photophysics of chromium-related diamond single-photon emitters. Phys. Rev. A. 2010; 81: 043813. https://doi.org/10.1103/PhysRevA.81.043813
Дополнительные файлы
