Single-Photon Sources. Review. Part 2
- Authors: Krishtop V.G.1,2,3
-
Affiliations:
- Institute of Microelectronics Technology and High Purity Materials RAS
- JSC “InfoTeСS”
- Moscow Institute of Physics and Technology
- Issue: Vol 18, No 8 (2024)
- Pages: 610-620
- Section: Quantum Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/646031
- DOI: https://doi.org/10.22184/1993-7296.FROS.2024.18.8.610.620
- ID: 646031
Cite item
Abstract
This review discusses various ways to create single-photon sources (SPS). The task of generating single photons can be solved in various ways, and at the moment there is no one among them that would be significantly preferable.
The first part of the review discussed the requirements for single-photon sources and criteria for characterizing sources. The first part of the review included single photons sources based on single ions and based on single atoms.
The second part reviews SPS based on quantum dots and color centers in crystals.
Full Text

About the authors
V. G. Krishtop
Institute of Microelectronics Technology and High Purity Materials RAS; JSC “InfoTeСS”; Moscow Institute of Physics and Technology
Author for correspondence.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Russian Federation, Chernogolovka, Moscow region; Moscow; Dolgoprudny, Moscow Region
References
- P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotech. 2017;12: 1026–1039. https://doi.org/10.1038/nnano.2017.218
- K. D. Zeuner, K. D. Jöns, L. Schweickert, C. R. Hedlund, C. N. Lobato, T. Lettner, K. Wang, S. Gyger, E. Schöll, S. Steinhauer, M. Hammar, V. Zwiller. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics. 2021; 8: 2337–2344. https://doi.org/10.1021/acsphotonics.1c00504
- J. Kim, O. Benson, H. Kan, Y. Yamamoto. A single-photon turnstile device. Nature. 1999; 397: 500. http://dx.doi.org/10.1038/17295
- S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105: 141109. https://doi.org/10.1063/1.4897640
- X. Lin, X. Dai, C. Pu, Y. Deng, Y. Niu, L. Tong, W. Fang, Y. Jin, X. Peng. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications. 2017; 8: 1132. https://doi.org/10.1038/s41467-017-01379-6
- A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996. https://doi.org/10.1126/science.271.5251.933
- Y. Arakawa, M. J. Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020; 7(2): 021309. https://doi.org/10.1063/5.0010193
- R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10(6): 639. https://doi.org/10.3390/photonics10060639
- T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett. 2016; 109(13): 132106. https://doi.org/10.1063/1.4961888
- A. Musiał, P. Holewa, P. Wyborski, M. Syperek, A. Kors, J. P. Reithmaier, G. Sęk, M. Benyoucef. High-purity triggered single-photon emission from symmetric single InAs/InP quantum dots around the telecom C-band window. Adv. Quantum Technol. 2019; 3(2): 1900082. https://doi.org/10.1002/qute.201900082
- Ł. Dusanowski, M. Syperek, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, G. Sęk. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl. Phys. Lett. 2016; 108(16): 163108. https://doi.org/10.1063/1.4947448
- Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.-Y. Lu, J.-W. Pan. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology. 2013; 8(3): 213–217. https://doi.org/10.1038/nnano.2012.262
- Ł. Dusanowski, P. Holewa, A. Maryński, A. Musiał, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, J. Misiewicz, S. Reitzenstein, G. Sęk. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot. Optics Express. 2017; 25(25): 31122. https://doi.org/10.1364/oe.25.031122
- R. P. Mirin. Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot. Appl. Phys. Lett. 2004; 84(8): 1260–1262. https://doi.org/10.1063/1.1650032
- C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, N. Gisin. Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett. 2006; 88(13): 131102. https://doi.org/10.1063/1.2190466
- L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 2018; 112(9): 093106. https://doi.org/10.1063/1.5020038
- L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, S. Sanguinetti. High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 2012; 100(23), 231112. https://doi.org/10.1063/1.4726189
- P. Yu, Z. Li, T. Wu, Y.-T. Wang, X. Tong, C.-F. Li, Z. Wang, S.-H. Wei, Y. Zhang, H. Liu, L. Fu, Y. Zhang, J. Wu, H. H. Tan, C. Jagadish, Z. M. Wang. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano. 2019; 13(11): 13492–13500. https://doi.org/10.1021/acsnano.9b07204
- V. Zwiller, T. Aichele, W. Seifert, J. Persson, O. Benson. Generating visible single photons on demand with single InP quantum dots. Appl. Phys. Lett. 2003; 82(10): 1509–1511. https://doi.org/10.1063/1.1558952
- M. Wiesner, W.-M. Schulz, C. Kessler, M. Reischle, S. Metzner, F. Bertram, J. Christen, R. Roßbach, M. Jetter, P. Michler. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001). Nanotechnology. 2012; 23(33): 335201. https://doi.org/10.1088/0957-4484/23/33/335201
- A. Ugur, S. Kremling, F. Hatami, S. Höfling, L. Worschech, A. Forchel, W. T. Masselink. Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots. Appl. Phys. Lett. 2012; 100(2): 023116. https://doi.org/10.1063/1.3676273
- A. Tribu, G. Sallen, T. Aichele, R. André, J.-P. Poizat, C. Bougerol, S. Tatarenko, K. Kheng. A high-temperature single-photon source from nanowire quantum dots. Nano Letters. 2008; 8(12): 4326–4329. https://doi.org/10.1021/nl802160z
- S. Bounouar, M. Elouneg-Jamroz, M. I. Den Hertog, C. Morchutt, E. Bellet-Amalric, R. André, C. Bougerol, Y. Genuist, J.-P. Poizat, S. Tatarenko, K. Kheng. Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Letters. 2012; 12(6): 2977–2981. https://doi.org/10.1021/nl300733f
- K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, A. Forchel. Single-photon emission of CdSe quantum dots at temperatures up to 200K. Appl. Phys. Lett. 2002; 81: 2920. https://doi.org/10.1063/1.1515364
- W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe/MgS semiconductor quantum dot. Physica Status Solidi C. 2014; 11(7–8): 1256–1259. https://doi.org/10.1002/pssc.201300627
- O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, T. Kummell. Room temperature single photon emission from an epitaxially grown quantum dot. Appl. Phys. Lett. 2012; 100(6): 061114. https://doi.org/10.1063/1.3683498
- W. Quitsch, T. Kummell, A. Gust, C. Kruse, D. Hommel, G. Bacher. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K. Appl. Phys. Lett. 2014; 105(9): 091102. https://doi.org/10.1063/1.4894729
- M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, O. G. Schmidt. Wavelength tunable triggered single-photon source from a single CdTe quantum dot on silicon substrate. Nano Letters. 2009; 9(1): 304–307. https://doi.org/10.1021/nl802948a
- J.-H. Cho, Y. M. Kim, S.-H. Lim, H.-S. Yeo, S. Kim, S. Gong, Y.-H. Cho. Strongly coherent single-photon emission from site-controlled InGaN quantum dots embedded in GaN nanopyramids. ACS Photonics. 2018; 5: 439. https://doi.org/10.1021/acsphotonics.7b00922
- H. P. Springbett, J. Jarman, T. Zhu, M. Holmes, Y. Arakawa, R. A. Oliver. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl. Phys. Lett. 2018; 113(10): 101107. https://doi.org/10.1063/1.5045843
- S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 2014; 105(14): 141109. https://doi.org/10.1063/1.4897640
- M. Arita, F. L. Roux, M. J. Holmes, S. Kako, Y. Arakawa. Ultraclean single photon emission from a GaN Quantum dot. Nano Letters. 2017; 17(5): 2902–2907. https://doi.org/10.1021/acs.nanolett.7b00109
- M. J. Holmes, S. Kako, K. Choi, M. Arita, Y. Arakawa. Single photons from a hot solid-state emitter at 350K. ACS Photonics. 2016; 3(4), 543–546. https://doi.org/10.1021/acsphotonics.6b00112
- S. Kako, M. Holmes, S. Sergent, M. Bürger, D. J. As, Y. Arakawa. Single-photon emission from cubic GaN quantum dots. Appl. Phys. Lett. 2014; 104(1): 011101. https://doi.org/10.1063/1.4858966
- M. Gurioli, Z. Wang, A. Rastelli, T. Kuroda, S. Sanguinetti. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nature Materials. 2019; 18 (8): 799–810. https://doi.org/10.1038/s41563-019-0355-y
- L. Zhai, M. C. Löbl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig, R. J. Warburton. Low-noise GaAs quantum dots for quantum photonics. Nature Communications. 2020; 11(1): 4745. https://doi.org/10.1038/s41467-020-18625-z
- P. Herve, L.K.J. Vandamme. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology. 1994; 35 (4): 609–615. https://doi.org/10.1016/1350-4495(94)90026-4
- S. Reitzenstein, A. Forchel. Quantum dot micropillars. Journal of Physics D: Applied Physics. 2010; 43 (3): 033001. https://doi.org/10.1088/0022-3727/43/3/033001
- А. И. Галимов, М. В. Рахлин, Г. В. Климко, Ю. М. Задиранов, Ю. А. Гусева, С. И. Трошков, Т. В. Шубина, А. А. Торопов. Источник неразличимых одиночных фотонов на основе эпитаксиальных InAs/GaAs квантовых точек для интеграции в схемы квантовых вычислений. Письма в ЖЭТФ. 2021; 113(4); 248–255. https://doi.org/10.31857/S1234567821040054
- N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nature Nanotechnology. 2021; 16 (4): 399–403. https://doi.org/10.1038/s41565-020-00831-x
- D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature. 2019; 575 (7784): 622–627. https://doi.org/10.1038/s41586-019-1709-y
- F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. C. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13 (9): 835–840. https://doi.org/10.1038/s41565-018-0188-x
- R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl. Scalable integrated single-photon source. Science Advances. 2020; 6(50): eabc8268. https://doi.org/10.1126/sciadv.abc8268
- U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, P. Michler. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Appl. Phys. Lett. 2015; 107 (2): 021101. https://doi.org/10.1063/1.4926729
- R. Li, F. Liu, Q. Lu. Quantum Light Source Based on Semiconductor Quantum Dots: A Review. Photonics. 2023; 10: 639. https://doi.org/10.3390/photonics10060639
- N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nature Photonics. 2016; 10: 340–345. https://doi.org/10.1038/nphoton.2016.23
- T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.-H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein. A bright triggered twin-photon source in the solid state. Nature Communications. 2017; 8:14870. https://doi.org/10.1038/ncomms14870
- M. Moczała-Dusanowska, Ł. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, S. Höfling. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photonics. 2020; 7: 3474–3480. https://doi.org/10.1021/acsphotonics.0c01465
- X. Li, S. Liu, Y. Wei, J. Ma, C. Song, Y. Yu, R. Su, W. Geng, H. Ni, H. Liu, X. Su, Z. Niu, Y.-L. Chen, J. Liu. Bright semiconductor single-photon sources pumped by heterogeneously integrated micropillar lasers with electrical injections. Light Sci. Appl. 2023; 12: 65. https://doi.org/10.1038/s41377-023-01110-9
- F. Liu, A. J. Brash, J. O’Hara, L.M.P.P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, A. M. Fox. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology. 2018; 13: 835–840. https://doi.org/10.1038/s41565-018-0188-x
- A. Komarovskikh, V. Nadolinny, V. Plyusnin, Y. Palyanov, M. Rakhmanova. Photoluminescence of HPHT diamonds synthesized in the Mg-Ge-C system. Diamond and Related Materials. 2017; 79:145–149. https://doi.org/10.1016/j.diamond.2017.09.012
- A. M. Zaitsev. Optical properties of diamond: a data handbook. Springer: Berlin, New York. 2001. https://doi.org/10.1007/978-3-662-04548-0
- A. M. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B. 2000; 61:12909–12922. https://doi.org/10.1103/PhysRevB.61.12909
- I. Aharonovich, A. D. Greentree, S. Prawer. Diamond photonics. Nature Photonics. 2011; 5: 397–405. https://doi.org/10.1038/nphoton.2011.54
- E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J.-F. Roch. Room temperature triggered single-photon source in the near infrared. New J. Phys. 2007; 9: 434–434. https://doi.org/10.1088/1367-2630/9/12/434
- R. Nelz, J. Görlitz, D. Herrmann, A. Slablab, M. Challier, M. Radtke, M. Fischer, S. Gsell, M. Schreck, C. Becher, E. Neu. Toward wafer-scale diamond nano- and quantum technologies. APL Materials. 2019; 7: 011108. https://doi.org/10.1063/1.5067267
- S. D. Trofimov, S. A. Tarelkin, S. V. Bolshedvorskii, V. S. Bormashov, S. Yu. Troshchiev, A. V. Golovanov, N. V. Luparev, D. D. Prikhodko, K. N. Boldyrev, S. A. Terentiev, A. V. Akimov, N. I. Kargin, N. S. Kukin, A. S. Gusev, A. A. Shemukhin, Y. V. Balakshin, S. G. Buga, V. D. Blank. Spatially controlled fabrication of single NV centers in IIa HPHT diamond. Opt. Mater. Express. 2020; 10: 198. https://doi.org/10.1364/OME.10.000198
- J. Achard, V. Jacques, A. Tallaire. CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics. 2020; 53: 313001. https://doi.org/10.1088/1361-6463/ab81d1
- R. P. Mildren, J. R. Rabeau et al. Optical Engineering of Diamond. – Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim. Germany. 2013. https://doi.org/10.1002/9783527648603
- M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, J. Wrachtrup. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling. Review of Scientific Instruments. 2014; 85: 123703. https://doi.org/10.1063/1.4902818
- A. V. Golovanov, V. S. Bormashov, N. V. Luparev, S. A. Tarelkin, S. Y. Troschiev, S. G. Buga, V. D. Blank. Diamond Microstructuring by Deep Anisotropic Reactive Ion Etching. Physica Status Solidi (a). 2018;215: 1800273. https://doi.org/10.1002/pssa.201800273
- Z. Liu, T.-F. Zhu, Y.-F. Wang, I. Ahmed, Z. Liu, F. Wen, X. Zhang, W. Wang, S. Fan, K. Wang, H.-X. Wang. Fabrication of Diamond Submicron Lenses and Cylinders by ICP Etching Technique with SiO2 Balls Mask. Materials. 2019; 12: 1622. https://doi.org/10.3390/ma12101622
- T.-Y. Huang, R. R. Grote, S. A. Mann, D. A. Hopper, A. L. Exarhos, G. G. Lopez, G. R. Kaighn, E. C. Garnett, L. C. Bassett. A monolithic immersion metalens for imaging solid-state quantum emitters. Nature Communicatons. 2019; 10: 2392. https://doi.org/10.1038/s41467-019-10238-5
- A. M. Romshin, A. V. Gritsienko, A. S. Ilin, R. K. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Enhancing single-photon emission of silicon-vacancy centers in nanodiamonds by a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023; 16 (1.3): 135–139. https://doi.org/10.18721/JPM.161.323
- A. Romshin, A. Gritsenko, P. Lega, A. Orlov, A. Ilin, A. Martyanov, V. Sedov, I. Vlasov, A. Vitukhnovsky. Effectively enhanced emission from silicon-vacancy centers in a hybrid diamond-in-pit microstructure. Laser Physics Letters. 2022; 20(1): 015206. https://doi.org/10.1088/1612-202X/acabcd
- A. A. Zhivopistsev, A. M. Romshin, A. V. Gritsienko, P. V. Lega, R. Kh. Bagramov, V. P. Filonenko, A. G. Vitukhnovsky, I. I. Vlasov. Single photon emission of “silicon-vacancy” centers in nanodiamonds placed in cylindrical pits on a gold film. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024; 17(1):100–104. https://doi.org/10.18721/JPM.171.116
- D. Yu. Fedyanin, M. Agio. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New Journal of Physics. 2016; 18: 073012. http://iopscience.iop.org/article/10.1088/1367-2630/18/7/073012
- I. A. Khramtsov, M. Agio, D. Yu. Fedyanin. Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 2017; 8: 024031. https://doi.org/10.1103/PhysRevApplied.8.024031
- I. A. Khramtsov, D. Y. Fedyanin. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Phys. Rev. Appl. 2019; 12: 024013. https://doi.org/10.1103/physrevapplied.12.024013
- D. Timerkaeva, C. Attaccalite, G. Brenet, D. Caliste, P. Pochet. Structural, electronic, and optical properties of the C–C complex in bulk silicon from first principles. J. Appl. Phys. 2018; 123(16): 161421. https://doi.org/10.1063/1.5010269
- M. Hollenbach, Y. Berencén, U. Kentsch, M. Helm, G. V. Astakhov. Engineering telecom single-photon emitters in silicon for scalable quantum photonics. Optics Express. 2020; 28(18): 26111–26121. https://doi.org/10.1364/OE.397377
- S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. A silicon carbide room-temperature single-photon source. Nature Materials. 2013; 13: 151–156. https://doi.org/10.1038/nmat3806
- F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, V. Dyakonov. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Scientific Reports. 2013; 3:1637. https://doi.org/10.1038/srep01637
- F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G. V. Astakhov. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nature Communications. 2015; 6(1): 7578. https://doi.org/10.1038/ncomms8578
- G. Calusine, A. Politi, D. D. Awschalom. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 2014; 105: 011123. https://doi.org/10.1063/1.4890083
- I. Aharonovich, S. Castelletto, D. A. Simpson, A. D. Greentree, S. Prawer. Photophysics of chromium-related diamond single-photon emitters. Phys. Rev. A. 2010; 81: 043813. https://doi.org/10.1103/PhysRevA.81.043813
Supplementary files
