Comparative Analysis of Optical Methods for Detection And Identification of Viral Infection During Monitoring of Vegetatively Propagated Lilac Cultivar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article discusses the issues of assessing the prospects for detecting latent viral infection for monitoring viral pathogens using digital processing of images obtained by an optical digital camera and hyperspectral images. Information on 13 types of viruses that have been registered in some regions where Syringa L. grows is provided. Data on the species composition of Syringa viruses in the ecosystems of the Main Botanical Garden and the Moscow region and their symptoms are described. Based on the virological examination, specialized pathogens Lilac ring mottle ilarvirus (LRMV), Lilac leaf chlorosis ilarvirus (LLCV), as well as Carnation mottle carmovirus, Cucumber mosaic cucumovirus, Alfalfa mosaic alfamovirus and Potato Y potyvirus, which are not typical for lilacs, were diagnosed on lilac. As a result of system monitoring, the frequency of occurrence of seven viruses was determined.

Full Text

Restricted Access

About the authors

M. A. Keldysh

N. V. Tsitsin Main Botanical Garden RAS

Author for correspondence.
Email: k.marina2009@mail.ru
Scopus Author ID: 58167740200

Candidate of Biological Sciences; Senior Researcher

Russian Federation, Moscow

O. N. Chervyakova

N. V. Tsitsin Main Botanical Garden RAS

Email: cherolya@mail.ru
ORCID iD: 0000-0001-6797-9135

Candidate of Biological Sciences; Senior Researcher

Russian Federation, Moscow

O. V. Shelepova

N. V. Tsitsin Main Botanical Garden RAS

Email: k.marina2009@mail.ru
ORCID iD: 0000-0003-2011-6054

Candidate of Biological Sciences, V. N. S.

Russian Federation, Moscow

I. V. Mitrofanova

N. V. Tsitsin Main Botanical Garden RAS

Email: k.marina2009@mail.ru
ORCID iD: 0000-0002-4650-6942

Doctor of Biological Sciences, G. N.S.

Russian Federation, Moscow

I. V. Petrunya

All-Russia Research Institute of Agricultural Biotechnology

Email: k.marina2009@mail.ru

PhD

Russian Federation, Moscow

K. A. Sudarikov

All-Russia Research Institute of Agricultural Biotechnology

Email: k.marina2009@mail.ru
ORCID iD: 0009-0005-8734-1223

Research Engineer

Russian Federation, Moscow

A. A. Gulevich

All-Russia Research Institute of Agricultural Biotechnology

Email: k.marina2009@mail.ru
ORCID iD: 0000-0003-4399-2903

Candidate of Biological Sciences, Senior Researcher

Russian Federation, Moscow

E. N. Baranova

N. V. Tsitsin Main Botanical Garden RAS; All-Russia Research Institute of Agricultural Biotechnology

Email: k.marina2009@mail.ru
ORCID iD: 0000-0001-8169-9228

Candidate of Biological Sciences, Senior Researcher

Russian Federation, Moscow; Moscow

References

  1. Sukhova E, Sukhov V. Analysis of Light-Induced Changes in the Photochemical Reflectance Index (PRI) in Leaves of Pea, Wheat, and Pumpkin Using Pulses of Green-Yellow Measuring Light. Remote Sensing. 2019; 11(7):810. doi: 10.3390/rs11070810.
  2. Zhao Q., Qu Y. The Retrieval of Ground NDVI (Normalized Difference Vegetation Index) Data Consistent with Remote-Sensing Observations. Remote Sensing. 2024; 16: 1212. doi: 10.3390/rs1607121.
  3. Xu Y., Shrestha V., Piasecki C., Wolfe B., Hamilton L., Millwood R. J., Mazarei M., Stewart C. N. Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery. Plants. 2021; 10(12): 2726. doi: 10.3390/plants10122726.
  4. Shelepova O. V., Baranova E. N., Sudarikov K. A., Olekhnovich L. S., Konovalova L. N., Latushkin V. V., Vernik P. A., Gulevich A. A. Evaluation of the Use of LED Lighting in Combination with the Use of γ-PGA SAP Peptide on the Growth and Development of Peppermint Plants in a Closed Biosystem. Photonics Russia. 2024; 18(6): 486–498. doi: 10.22184/1993-7296. Шелепова О. В., Баранова Е. Н., Судариков К. А., Олехнович Л. С., Коновалова Л. Н., Латушкин В. В., Гулевич А. А., Верник П. А. Оценка использования светодиодного освещения в сочетании с применением γ-PGA SAP пептида на рост и развитие растений мяты перечной в условиях закрытой биосистемы. Фотоника. 2024; 18(6): 486–498. doi: 10.22184/1993-7296.
  5. Hull R., Brown F., Fand Paule C. Directory and Dictonary of Animal, Bacterial and Plant Viruses. – Mac Millan Reference Books, London. 1989.119.
  6. Jiseon O., Jisuk Y., Suyeon J., Kook-Hyung K. Identification of a new strain of ligustrum virus A causing leaf necrosis and chlorosis symptoms in Syringa oblata var. dilatata (Nakai) Rehder. Archives of Virology. 2022. 167(6): 1487–1490. doi: 10.1007/s00705-022-05439-1.
  7. CHervyakova O. N., Keldysh M. A. Bolezni i vrediteli sireni. Cvetovodstvo. 2011; 5: 12–15. Червякова О. Н., Келдыш М. А. Болезни и вредители сирени. Цветоводство. 2011; 5: 12–15.
  8. Su G., Cao Y., Li C., Yu X., Gao X., Tu P., Chai X. Phytochemical and pharmacological progress on the genus Syringa L. Chemistry Central Journal. 2015; 9:1–12. doi: 10.1186/s13065-015-0079-2.
  9. Koroleva O. V.; Molkanova O. I.; Vysotskaya O. N. Development of cryopreservation technique for meristems of Syringa vulgaris L. cultivars. International Journal of Plant Biology. 2023;14: 625–637. doi: 10.3390/ijpb14030048.
  10. Seitadzhieva S., Gulevich A. A., Yegorova N., Nevkrytaya N., Abdurashytov S., Radchenko L., Pashtetskiy V., Baranova E. N. Viral infection control in the essential oil-bearing rose nursery: Collection maintenance and monitoring. Horticulturae. 2022; 8: 629. doi: 10.3390/horticulturae8070629.
  11. Keldysh M. A., CHervyakova O. N. Osobennosti rasprostraneniya i adaptivnosti virusov v ekosistemah drevesnyh rastenij. Drevesnye rasteniya: fundamental’nye i prikladnye issledovaniya. 2013; 2: 46–54. Келдыш М. А., Червякова О. Н. Особенности распространения и адаптивности вирусов в экосистемах древесных растений. Древесные растения: фундаментальные и прикладные исследования. 2013; 2: 46–54.
  12. Scholthof H. B. Plant virus transport: motions of functional eqvivalence. Trends in Plant Science. 2005;10(8): 376–382. doi: 10.3109/17435390.2015.1048326.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. External symptoms of virus manifestation and sampling points for spectrophotometric determination of samples and evaluation of RGB (red, green, blue) optical values: a) – Arabis mosaic virus; b) – Cherry leaf roll virus; c) – Lilac leaf chlorosis virus; d) – Lilac ring mottle virus; e) – Tobacco mosaic virus; f) – Tomato mosaic virus; g) – Carnation mottle virus; h) – Elm mottle virus; i) – Lilac ring mottle virus + Tobacco mosaic virus (the circles indicate the sampling locations)

Download (1MB)
3. Fig. 2. PCR identification of viral nucleic acid: MR – molecular weight markers (100+ bp DNA Ladder; a) 1–8 accessions (images of LLCV-infected leaves obtained by overlaying a heat map of the NDVI index (b–k). The first row of images displays the area in the range from 0.5 to 0.95 (b, c, d, e), showing both diseased and healthy areas. In the first case, the images demonstrate areas in leaves with an index from 0.5 to 0.75 (f, i). In the second case, the index from 0.75 to 0.95 (h, i), the figure shows healthy areas in leaves

Download (780KB)
4. Fig. 3. Using PRI to analyze images of LLCV-infected leaves obtained with a hyperspectral camera. Graphs 1-A and 2-A show the wavelengths used for PRI; 3-A and 4-A are the wavelengths used for NDVI. Graph B shows the distribution of pixel counts in the image with the PRI index superimposed, showing that the peak of the count occurs at the zero index value. Images of a single leaf (C, D, E) with the PRI heat map superimposed on it. Figure F is the original leaf image with the areas of interest highlighted on it

Download (774KB)

Copyright (c) 2024 Keldysh M.A., Chervyakova O.N., Shelepova O.V., Mitrofanova I.V., Petrunya I.V., Sudarikov K.A., Gulevich A.A., Baranova E.N.