Laser cladding of nozzle blades made of cobalt alloy MAR-M 509 using the laser gas-powder cladding method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The articles indicates the parameters of laser gas-powder cladding mode to restore the MAN TURBO engine nozzle blades made of cobalt alloy MAR-M 509 using the domestic powder EP648. The process measures to prevent crack formation during the laser cladding are described. Restoration of a series of nozzle blades was performed using a robotized station for laser direct deposition.

Full Text

Restricted Access

About the authors

Vladimir G. Protsenko

Peter the Great Saint-Petersburg Polytechnic University

Email: dmitriyanufriyev23@yandex.ru

engineer of the research laboratory “Laser and Additive Technologies”, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Dmitry Anufriev

Peter the Great Saint-Petersburg Polytechnic University

Author for correspondence.
Email: dmitriyanufriyev23@yandex.ru
ORCID iD: 0009-0005-5698-9625

Engineer of the Research Laboratory “Laser and Additive Technologies”, Research Laboratory “Laser and Additive Technologies”, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Mikhail V. Kuznetsov

Peter the Great Saint-Petersburg Polytechnic University

Email: kuznetsov_mich@mail.ru
ORCID iD: 0000-0002-9981-1078

Cand.of Technical Sciences, Head of the Research Laboratory “Laser and Additive Technologies”, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Anatoly A. Popovich

Peter the Great Saint-Petersburg Polytechnic University

Email: dmitriyanufriyev23@yandex.ru
ORCID iD: 0000-0002-5974-6654

Doctor of Technical Sciences, professor, director of the Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

References

  1. Zemlyakov E. V., Babkin K. D., Korsmik R. S., Sklyar M. O., Kuznetsov M. V. Prospects of Use of Laser Сladding Technology for Restoration of Compressor Blades of Gas Turbine Engines. Photonics Russia. 2016;58(4):10–25. doi: 10.22184/1993-7296.2016.58.4.10.22. Земляков Е. В., Бабкин К. Д., Корсмик Р. С., Гущина (Скляр) М. О., Кузнецов М. В. Перспективы использования технологии лазерной наплавки для восстановления лопаток компрессоров газотурбинных двигателей. Фотоника. 2016;58(4):10–25. doi: 10.22184/1993-7296.2016.58.4.10.22.
  2. Кузнецов М., Земляков Е., Бабкин К. Обзор лазерных технологических головок для реализации промышленных лазерных технологий обработки металлических материалов. Фотоника. 2016; 60(6):14–33. doi: 10.22184/1993-7296.2016.60.6.14.33. Kuznetsov M., Zemlyakov E., Babkin K. Review of Laser Technological Heads for Implementation of Industrial Laser Technologies of Metal Material Working. Photonics Russia. 2016; 60(6):14–33. doi: 10.22184/1993-7296.2016.60.6.14.33.
  3. Popovich A. A., Sufiyarov V.Sh., Razumov N. G., Borisov E. V., Masajlo D. V., Goncharov I. S. Materialy i additivnye tekhnologii. Sovremennye materialy dlya additivnyh tekhnologij. – SPb.: POLITEH-PRESS. 2021. – 204 s. Попович А. А., Суфияров В. Ш., Разумов Н. Г., Борисов Е. В., Масайло Д. В., Гончаров И. С. Материалы и аддитивные технологии. Современные материалы для аддитивных технологий. – СПб.: ПОЛИТЕХ-ПРЕСС. 2021. – 204 с.
  4. Groden C., Bose S., Bandyopadhyay A., Champagne V. Inconel 718-CoCrMo bimetallic structures through directed energy deposition-based additive manufacturing. Materials Science in Additive Manufacturing. 2022;1(3): 18. doi: 10.18063/msam.v1i3.18.
  5. Kuznetsov M., Turichin G., Silevich V., Ochkasov V., Sorokin A. Research of technological possibility of increasing erosion resistance rotor blade using laser cladding: 17th Nordic Laser Materials Processing Conference – NOLAMP17. Procedia Manufacturing. 2019; 36:163–175.
  6. Evgenov A. G., Shcherbakov S. I., Rogalev A. M. Oprobovanie poroshkov zharoprochnyh splavov EP718 i EP648 proizvodstva FGUP “VIAM” dlya remonta detalej GTD metodom lazernoj gazoporoshkovoj naplavki. Aviacionnye materialy i tekhnologii. 2016;1(43): 16–23. Евгенов А. Г., Щербаков С. И., Рогалев А. М. Опробование порошков жаропрочных сплавов ЭП718 и ЭП648 производства ФГУП «ВИАМ» для ремонта деталей ГТД методом лазерной газопорошковой наплавки. Авиационные материалы и технологии. 2016;1(43): 16–23.
  7. Li P., Zhou J., Gong Y., Meng X., Lu J. Effect of post-heat treatment on the microstructure and mechanical properties of laser metal deposition Inconel 718. Journal of Mechanical Science and Technology. 2021;35(7): 2871–2878. doi: 10.1007/s12206-021-0610-4.
  8. Mo B., Li T., Shi F., Deng L., Liu W. Crack initiation and propagation within nickel-based high-temperature alloys during laser-based directed energy deposition: A review. Optics & Laser Technology. 2024; 179: 27. doi: 10.1016/j.optlastec.2024.111327.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Laser gas powder cladding process

Download (452KB)
3. Fig. 2. Robotized station for laser direct deposition

Download (293KB)
4. Fig. 3. Cross-section of a sample made of EP648

Download (491KB)
5. Fig. 4. Photograph of the obtained weld deposit

Download (326KB)
6. Fig. 5. Microstructure of the weld zone

Download (376KB)
7. Fig. 6. Distribution of hardness by the deposited layer height

Download (60KB)
8. Fig. 7. Cracks formed during the cladding process: a) – along the fusion line; b) – in the heat-affected zone

Download (389KB)
9. Fig. 8. Section of the fusion zone MAR-M 509 and EP648 (weld deposit on the right side)

Download (124KB)
10. Fig. 9. Model of equipment for preliminary and subsequent heating of a blade

Download (145KB)

Copyright (c) 2025 Protsenko V.G., Anufriev D., Kuznetsov M.V., Popovich A.A.