Influence of Laser Treatment Modes of Cast Iron on the Parameters of Hardening Zones and Their Tribotechnical Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the results of metallographic and tribotechnical tests of cast iron in friction pairs with 40Kh steel. It is shown that the use of transverse oscillations of the laser beam significantly increases the processing performance, eliminates surface defects that occur when radiation is applied to the surface of cast iron samples with a defocused beam. It is established that laser thermal hardening significantly reduces the coefficients of friction and increases microhardness by 4–6 times and wear resistance of modified cast iron surfaces in 2.5–3.5 times compared to their initial state, depending on the processing modes.

Full Text

Restricted Access

About the authors

Vladimir P. Biryukov

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Author for correspondence.
Email: photonics@technosphera.ru
Scopus Author ID: 0000-0001-9278-6925

Cand.of. Eng.

Russian Federation, Moscow

References

  1. Aliakbari K., Nejad R. M., Mamaghani T. A., Pouryamout P., Asiabaraki H. R. Failure analysis of ductile iron crankshaft in compact pickup truck diesel engine. Structures. 2022; 36:482–492. doi: 10.1016/j.istruc.2021.12.034.
  2. Artola G., Gallastegi I., Izaga J., Barrena M., Rimmer A. Austempered ductile iron (ADI) alternative material for high-performance applications. International Journal of Metalcasting. 2017; 11 (1):131–135. doi: 10.1007/s40962-016-0085-8.
  3. Suh A., Patel J., Polycarpou A., Corny T. Scuffing of cast iron and Al390-T6 materials used in compressor applications. Wear. 2006; 260(7–8):735–44. doi: 10.1016/j.wear.2005.04.013.
  4. Keller J., Fridrici V., Kapsa P., Vidaller S., Huard J. Influence of chemical composition and microstructure of gray cast iron on wear of heavy duty diesel engines cylinder liners. Wear. 2007; 263 (7–12): 1158–64. doi: 10.1016/j.wear.2007.01.091.
  5. Truhan J., Qu J., Blau P. A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribol. Int. 2005; 38 (3): 211–218. doi: 10.1016/j.triboint.2004.08.003.
  6. Wagh, S.V., Ingole, S., Bhatt, D.V., Menghani, J.V., Rathod, M. J. Effect of Process Parameters on Surface Properties of Laser-Hardened Cast Iron. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. 2019; 733–743. doi: 10.1007/978-3-030-05861-6_72.
  7. Monteiro W. A., Silva E. M.R., Silva L.V, Rossi W., Buso S. J. Microstructural and mechanical characterization of gray cast iron and AlSi alloy after laser beam hardening. Mater. Sci. For. 2010; 638–642; 769–774. doi: 10.4028/ href='www.scientific.net/MSF.638-642.769' target='_blank'>www.scientific.net/MSF.638-642.769
  8. Wang B., Pan Y., Liu Y, Barber G. С., Qiu F., Hu M. Wear behavior of composite strengthened gray cast iron by austempering and laser hardening treatment. J. Mater. Res. Technol. 2020; 9 (2):2037–2043. doi: 10.1016/j.jmrt.2019.12.036 2238–7854.
  9. Roy А., Manna I. Laser surface engineering to improve wear resistance of austempered ductile iron. Materials Science and Engineering. 2001;.297: 85–93.
  10. Han X., Zhang Z., Pan Y, Barber G. C. Yang H., Qiu F. Sliding wear behavior of laser surface hardened austempered ductile iron. Journal of Materials Research and Technology. 2020; 9 (6): 14609–14618. doi: 10.1016/j.jmrt.2020.10.050.
  11. Küçük Y., Altas E., Topcu M. E. A comparative analysis of the effect of laser surface treatment on the dry sliding wear behavior of ductile cast irons with different microstructures. Optik – International Journal for Light and Electron Optics. 2023; 274:170540. doi: 10.1016/j.ijleo.2023.170540.
  12. Ghaini F. M., Ameri M. H., Torkamany M. J. Surface transformation hardening of ductile cast iron by a 600w fiber laser. Optik. 2019; 163758. doi: 10.1016/j.ijleo.2019.163758.
  13. Zammit A., Abela S., Betts J. C., Michalczewski R., Kalbarczyk M., Grech M. Scuffing and rolling contact fatigue resistance of discrete laser spot hardened austempered ductile iron. Wear. 2019; 422–423: 100–107. doi: 10.1016/j.wear.2019.01.061.
  14. Abd Ali H. R., Khalid E. A., Alwan A. S., Jaddoa А. А. Effect of Fibre Laser Surface Treatment on Wear Resistance of Gray Cast Iron Astm A48. Journal of Mechanical Engineering Research and Developments. 2021; 44(2): 141–149.
  15. Al-Sayed S.R., Elshazli А. М., Hussein А. Н. А. Laser Surface Hardening of Ni-hard White Cast Iron. Metals. 2020; 10:795. doi: 10.3390/met10060795.
  16. Biryukov V. P., Isakov V. V., Fedotov A. Y., Baulin D. A. Assessing the effect of laser processing modes on the parameters of hardened zones of steels and their wear resistance. Journal of Machinery Manufacture and Reliability. 2020; 49(7): 604–610. doi: 10.3103/S1052618820070043.
  17. Бирюков В. П., Исаков В. В., Федотов А. Ю., Баулин Д. А. Оценка влияния режимов лазерной обработки на параметры зон закалки сталей и их износостойкость. Проблемы машиностроения и автоматизации. 2020; 1: 28–35.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphs of the dependence of the depth and width of the zones of laser hardening of cast iron GI20 with a beam dimeter of 3.6 mm: a and c – quenching with a defocused beam; b and d – quenching with transverse oscillations of the beam with a frequency of 216 Hz

Download (220KB)
3. Fig. 2. Cross-section of zones of laser hardening of ductile iron: a – defocused beam, b – oscillating beam

Download (8MB)
4. Fig. 3. Graphs of microhardness from the depth of the layer for ductile iron DG60-3: a – defocused beam, b -oscillating beam

Download (96KB)
5. Fig. 4. Microstructure of the melting zone of ductile iron DG60-3 ×500

Download (887KB)
6. Fig. 5. The dependence of the sliding friction coefficients on the speed in the friction pair GI20-steel 40X: 1 – GI20 (180–210 NV), 2 – LH, 25 J / mm2, 3 –LH, 32 J / mm2, 4 – LH, 46 J / mm2

Download (92KB)
7. Fig. 6. Wear intensity of friction pairs GI20-steel 40X: 1 – GI20 (180–210HV), 2 – LH, 25 J / mm2, 3 – LH, 32 J / mm2, 4 – LH, 46 J / mm2

Download (66KB)

Copyright (c) 2023 Biryukov V.P.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies