Hollow Chain-Like Beams

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We have considered the diffraction of the first-order Bessel beam by zone plates with two odd open Fresnel zone to generate chain-like beams with an embedded phase singularity. We have shown that the capsule size depends on the number of the second odd open Fresnel zone and the zone plate focal length. The change of the zones relative illumination leads to the change of the contrast between dark and light regions. The best contrast corresponds to the equal illumination of the zones. We have experimentally generated a chain-like beam with an embedded vortex by the first-order Bessel beam diffraction by zone plates with the first and the ninth open Fresnel zones. We experimentally proved the dislocation presence and investigated the main beam features. We demonstrated sufficiently good agreement between experimental and numerically calculated results.

Full Text

Restricted Access

About the authors

Dmitry Yu. Cherepko

South Ural State University

Author for correspondence.
Email: journal@electronics.ru

Graduate Student

Russian Federation, Chelyabinsk

Natalia D. Kundikova

South Ural State University; Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences

Email: journal@electronics.ru
ORCID iD: 0000-0002-5880-9393

Dr. of Sciences (Phys.&Math.), professor, Head of laboratories

Russian Federation, Chelyabinsk; Ekaterinburg

Ivan I. Popkov

Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences

Email: journal@electronics.ru
ORCID iD: 0009-0008-4259-4376

Candidate of Sciences (Phys.&Math.), Researcher

Russian Federation, Ekaterinburg

References

  1. Forbes A. Structured Light from Lasers. Laser Photonics Rev. 2019;13(11):1–19. doi: 10.1002/lpor.201900140.
  2. Orlov S, Vosylius V, Gotovski P, Grabusovas A, Baltrukonis J, Gertus T. Vector beams with parabolic and elliptic cross-sections for laser material processing applications. J Laser Micro Nanoeng. 2018;13(3):280–6. doi: 10.2961/jlmn.2018.03.0023.
  3. Möhl A, Kaldun S, Kunz C, Müller FA, Fuchs U, Gräf S. Tailored focal beam shaping and its application in laser material processing. J Laser Appl. 2019;31(4):042019. doi: 10.2351/1.5123051.
  4. Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, et al. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci Appl. 2017;6: e17039. doi: 10.1038/lsa.2017.39.
  5. Otte E, Denz C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl Phys Rev. 2020;7(4): 041308. doi: 10.1063/5.0013276.
  6. Alpmann C, Schöler C, Denz C. Elegant Gaussian beams for enhanced optical manipulation. Appl Phys Lett. 2015;106(24): 241102. doi: 10.1063/1.4922743.
  7. Willner AE, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links. Nanophotonics. 2020;10(1):225–33. doi: 10.1515/nanoph-2020-0435.
  8. Willner AE, Pang K, Song H, Zou K, Zhou H. Orbital angular momentum of light for communications. Appl Phys Rev. 2021;8(4):041312. doi: 10.1063/5.0054885.
  9. Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics. 2022;11(4):645–80. doi: 10.1515/nanoph-2021-0527.
  10. Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull [Internet]. 2020;65(24):2072–9. doi: 10.1016/j.scib.2020.07.016.
  11. Calvo ML, Rodrigo JA, Alieva T. Generation of chain like beams. ICO20 Opt Inf Process. 2006;6027(60270):60270Z. doi: 10.1117/12.667925.
  12. Kundikova N.D., Ryzhkova A. V., Alieva T., Calvo M. L., Rodrigo J. A. Eksperimental’noe sozdanie i issledovanie struktury «cepochno-obraznyh» puchkov. Optika i spektroskopiya. 2008;104(5):834–8. Кундикова Н. Д., Рыжкова А. В., Alieva T., Calvo M. L., Rodrigo J. A. Экспериментальное создание и исследование структуры «цепочно-образных» пучков. Оптика и спектроскопия. 2008;104(5):834–8.
  13. Ferrando V., Calatayud A., Giménez F., Furlan W. D., Monsoriu J. a. Cantor dust zone plates. Opt Express. 2013;21(3):2701–6. doi: 10.1364/OE.21.002701.
  14. Mendoza-Yero O., Fernández-Alonso M., Mínguez-Vega G., Lancis J., Climent V., Monsoriu J. A. Fractal generalized zone plates. J Opt Soc Am A [Internet]. 2009 May 1;26(5):1161–6. doi: 10.1364/JOSAA.26.001161.
  15. Liberman V. S., Zel’dovich B. Y. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys Rev A. 1992;46(8):5199–207. doi: 10.1103/PhysRevA.46.5199.
  16. Dooghin A. V., Kundikova N. D., Liberman V. S., Zeldovich B. Y. Optical Magnus effect. Phys Rev A. 1992;45(11):8204–8. doi: 10.1103/PhysRevA.45.8204.
  17. Abdulkareem S., Kundikova N. Joint effect of polarization and the propagation path of a light beam on its intrinsic structure. Opt Express. 2016;24(17):19157–65. doi: 10.1364/OE.24.019157.
  18. Tao S. H., Yuan X. C., Lin J., Burge R. E. Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl Phys Lett. 2006;89(3): 031105. doi: 10.1063/1.2226995.
  19. Heckenberg N. R., McDuff R., Smith C. P., White A. G. Generation of optical phase singularities by computer-generated holograms. Opt Lett. 1992;17(3):221–3. doi: 10.1364/OL.17.000221.
  20. Cherepko D. Y., Kundikova N. D., Popkov I. I., Alieva T. Chain-like beams with phase singularity. Proceedings of SPIE. 2011;8011:80115Y-7. doi: 10.1117/12.902110.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The image of the binary amplitude mask with the first and ninth open Fresnel zones F = 145 cm

Download (101KB)
3. Fig. 2. Diffraction trees for the zone plate with the first and ninth open Fresnel zones, a) Gaussian beam diffracts, b) the first-order Bessel beam diffracts

Download (236KB)
4. Fig. 3. The first-order Bessel beam diffraction trees for the zone plate with the first and the fifth open Fresnel zones (a), for the zone plate with the first and the ninth open Fresnel zones (b), and the zone plate with the first and the thirteenth open Fresnel zones (c). An equal amount of light energy passes through two open zones

Download (364KB)
5. Fig. 4. The illumination of the zone plates with the first and the ninth open Fresnel zones with the first order Bessel beam: a) J9 / J1 = 0; b) J9 / J1 = 0.5; c) J9 / J1 = 2.5

Download (243KB)
6. Fig. 5. The first-order Bessel beam diffraction trees for the beam with the radius of the first ring equal to 2.3 mm (a); 3.45 mm (b); 4.6 mm (c)

Download (339KB)
7. Fig. 6. The profile of the chain-like beam at a distance of 1.26 m for the different radius of the first Bessel beam ring: a) J9 / J1 = 0.5, b) J9 / J1 = 2.5

Download (257KB)
8. Fig. 7. The influence of the zone plate focal length on the beam diffraction tree (J9 / J1 = 1): a) F = 0.9; b) F = 1.2; c) F = 1.5

Download (376KB)
9. Fig. 8. The experimental set-up used to investigate the properties of the hollow chain-like beams (more details are in the text)

Download (171KB)
10. Fig. 9. The experimental (left) and calculated (right) beam transverse intensity distribution at the distance of 1.6 m, J9 / J1 = 1

Download (264KB)
11. Fig. 10. The interference pattern of the Gaussian beam with the hollow chain-like beam

Download (207KB)
12. Fig. 11. The diffraction tree, constructed from the experimental data (left), and calculated numerically (right); F = 1.46 m, J9 / J1 = 7

Download (236KB)

Copyright (c) 2023 Cherepko D.Y., Kundikova N.D., Popkov I.I.