Hollow Chain-Like Beams
- Authors: Cherepko D.Y.1, Kundikova N.D.1,2, Popkov I.I.2
-
Affiliations:
- South Ural State University
- Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 17, No 4 (2023)
- Pages: 308-317
- Section: Optical Measurements
- URL: https://journals.eco-vector.com/1993-7296/article/view/627263
- DOI: https://doi.org/10.22184/1993-7296.FRos.2023.17.4.308.317
- ID: 627263
Cite item
Abstract
We have considered the diffraction of the first-order Bessel beam by zone plates with two odd open Fresnel zone to generate chain-like beams with an embedded phase singularity. We have shown that the capsule size depends on the number of the second odd open Fresnel zone and the zone plate focal length. The change of the zones relative illumination leads to the change of the contrast between dark and light regions. The best contrast corresponds to the equal illumination of the zones. We have experimentally generated a chain-like beam with an embedded vortex by the first-order Bessel beam diffraction by zone plates with the first and the ninth open Fresnel zones. We experimentally proved the dislocation presence and investigated the main beam features. We demonstrated sufficiently good agreement between experimental and numerically calculated results.
Full Text

About the authors
Dmitry Yu. Cherepko
South Ural State University
Author for correspondence.
Email: journal@electronics.ru
Graduate Student
Russian Federation, ChelyabinskNatalia D. Kundikova
South Ural State University; Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences
Email: journal@electronics.ru
ORCID iD: 0000-0002-5880-9393
Dr. of Sciences (Phys.&Math.), professor, Head of laboratories
Russian Federation, Chelyabinsk; EkaterinburgIvan I. Popkov
Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences
Email: journal@electronics.ru
ORCID iD: 0009-0008-4259-4376
Candidate of Sciences (Phys.&Math.), Researcher
Russian Federation, EkaterinburgReferences
- Forbes A. Structured Light from Lasers. Laser Photonics Rev. 2019;13(11):1–19. doi: 10.1002/lpor.201900140.
- Orlov S, Vosylius V, Gotovski P, Grabusovas A, Baltrukonis J, Gertus T. Vector beams with parabolic and elliptic cross-sections for laser material processing applications. J Laser Micro Nanoeng. 2018;13(3):280–6. doi: 10.2961/jlmn.2018.03.0023.
- Möhl A, Kaldun S, Kunz C, Müller FA, Fuchs U, Gräf S. Tailored focal beam shaping and its application in laser material processing. J Laser Appl. 2019;31(4):042019. doi: 10.2351/1.5123051.
- Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, et al. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci Appl. 2017;6: e17039. doi: 10.1038/lsa.2017.39.
- Otte E, Denz C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl Phys Rev. 2020;7(4): 041308. doi: 10.1063/5.0013276.
- Alpmann C, Schöler C, Denz C. Elegant Gaussian beams for enhanced optical manipulation. Appl Phys Lett. 2015;106(24): 241102. doi: 10.1063/1.4922743.
- Willner AE, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links. Nanophotonics. 2020;10(1):225–33. doi: 10.1515/nanoph-2020-0435.
- Willner AE, Pang K, Song H, Zou K, Zhou H. Orbital angular momentum of light for communications. Appl Phys Rev. 2021;8(4):041312. doi: 10.1063/5.0054885.
- Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics. 2022;11(4):645–80. doi: 10.1515/nanoph-2021-0527.
- Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull [Internet]. 2020;65(24):2072–9. doi: 10.1016/j.scib.2020.07.016.
- Calvo ML, Rodrigo JA, Alieva T. Generation of chain like beams. ICO20 Opt Inf Process. 2006;6027(60270):60270Z. doi: 10.1117/12.667925.
- Kundikova N.D., Ryzhkova A. V., Alieva T., Calvo M. L., Rodrigo J. A. Eksperimental’noe sozdanie i issledovanie struktury «cepochno-obraznyh» puchkov. Optika i spektroskopiya. 2008;104(5):834–8. Кундикова Н. Д., Рыжкова А. В., Alieva T., Calvo M. L., Rodrigo J. A. Экспериментальное создание и исследование структуры «цепочно-образных» пучков. Оптика и спектроскопия. 2008;104(5):834–8.
- Ferrando V., Calatayud A., Giménez F., Furlan W. D., Monsoriu J. a. Cantor dust zone plates. Opt Express. 2013;21(3):2701–6. doi: 10.1364/OE.21.002701.
- Mendoza-Yero O., Fernández-Alonso M., Mínguez-Vega G., Lancis J., Climent V., Monsoriu J. A. Fractal generalized zone plates. J Opt Soc Am A [Internet]. 2009 May 1;26(5):1161–6. doi: 10.1364/JOSAA.26.001161.
- Liberman V. S., Zel’dovich B. Y. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys Rev A. 1992;46(8):5199–207. doi: 10.1103/PhysRevA.46.5199.
- Dooghin A. V., Kundikova N. D., Liberman V. S., Zeldovich B. Y. Optical Magnus effect. Phys Rev A. 1992;45(11):8204–8. doi: 10.1103/PhysRevA.45.8204.
- Abdulkareem S., Kundikova N. Joint effect of polarization and the propagation path of a light beam on its intrinsic structure. Opt Express. 2016;24(17):19157–65. doi: 10.1364/OE.24.019157.
- Tao S. H., Yuan X. C., Lin J., Burge R. E. Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl Phys Lett. 2006;89(3): 031105. doi: 10.1063/1.2226995.
- Heckenberg N. R., McDuff R., Smith C. P., White A. G. Generation of optical phase singularities by computer-generated holograms. Opt Lett. 1992;17(3):221–3. doi: 10.1364/OL.17.000221.
- Cherepko D. Y., Kundikova N. D., Popkov I. I., Alieva T. Chain-like beams with phase singularity. Proceedings of SPIE. 2011;8011:80115Y-7. doi: 10.1117/12.902110.
Supplementary files
