Shedding light on DNA origami: applications in photonics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Photonics and DNA nanotechnologies complement each other well in a way that DNA nanostructures can be used to build intricate nano-optical systems. The DNA origami method has been particularly successful in creating the building blocks for photonics. Precise positioning of elements at the nanoscale is crucial for manipulating light fields, and this can be achieved by attaching specific nano-objects to a folded DNA molecule in a controlled manner. This review will highlight successful examples of how DNA origami and photonics can collaborate effectively.

Full Text

Restricted Access

About the authors

Maksim Evgenievich Stepanov

Moscow Pedagogical State University (MPGU)

Email: ua_khokhryakova@mpgu.su
ORCID iD: 0000-0002-0332-1235
Scopus Author ID: 57195265809
ResearcherId: AAB-6181-2022

Senior lecturer, Shpol’skii theor. physics chair, researcher at the assistant at the Youth Laboratory of Biophotonics and Nanoengineering

Russian Federation, Moscow

Uliana Aleksandrovna Khokhryakova

Moscow Pedagogical State University (MPGU)

Author for correspondence.
Email: ua_khokhryakova@mpgu.su

Bachelor in fundamental physics, esearch assistant at the Youth Laboratory of Biophotonics and Nanoengineering

Russian Federation, Moscow

Tatiana Vladimirovna Egorova

Moscow Pedagogical State University (MPGU)

Email: ua_khokhryakova@mpgu.su
ORCID iD: 0000-0002-7554-5246
Scopus Author ID: 56868341400
ResearcherId: P-9982-2017

Cand. of Sc. (Biology), head of the Youth Laboratory of Biophotonics and Nanoengineering

Russian Federation, Moscow

Konstantin Arutyunovich Magaryan

Moscow Pedagogical State University (MPGU)

Email: ua_khokhryakova@mpgu.su
ORCID iD: 0000-0003-4754-4657
ResearcherId: A-4208-2014

Cand. of Sc. (Phys. & Math.), associate professor Shpol’skii theor. physics chair, senior researcher at the Laboratory of Physics of Advanced Materials and Nanostructures

Russian Federation, Moscow

Andrey Vitalievich Naumov

Moscow Pedagogical State University (MPGU); Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk branch

Email: ua_khokhryakova@mpgu.su
ORCID iD: 0000-0001-7938-9802
Scopus Author ID: 7201349036
ResearcherId: E-8905-2010

corresponding member of the RAS, Dr. of Sc. (Phys.&Math.), head of the Troitsk branch, head of the Shpol’skii theor. physics chair, 

Russian Federation, Moscow; Troitsk

References

  1. M. E. Stepanov, U. A. Khokhryakova, T. V. Egorova, K. A. Magaryan, A. V. Naumov. Shedding light on DNA origami. PHOTONICS Russia. 2024; 18 (1): 72–80. doi: 10.22184/1993-7296.FRos.2022.16.8.600.602. М. Е. Степанов, У. А. Хохрякова, Т. В. Егорова, К. А. Магарян, А. В. Наумов. Проливая свет на ДНК-оригами. PHOTONICS Russia. 18 (2024) 72–80.doi: 10.22184/1993-7296.FRos.2022.16.8.600.602.
  2. M. E. Stepanov, U. A. Khokhryakova, T. V. Egorova, K. A. Magaryan, A. V. Naumov. Shedding light on DNA origami: Practice. PHOTONICS Russia. 18 (2024) 166–174. doi: 10.22184/1993-7296.FRos.2024.18.2.166.174. М. Е. Степанов, У. А. Хохрякова, Т. В. Егорова, К. А. Магарян, А. В. Наумов. Проливая свет на ДНК-оригами: практика использования. PHOTONICS Russia. 18 (2024) 166–174. doi: 10.22184/1993-7296.FRos.2024.18.2.166.174.
  3. Klimov V.V. Optical nanoresonators. Phys. Usp. 2023;66: 263–287.doi: 10.3367/UFNe.2022.02.039153S.
  4. A. F. Koenderink. Single-Photon Nanoantennas, ACS Photonics, 4 (2017) 710–722.
  5. E. M. Roller, L. V. Besteiro, C. Pupp, L. K. Khorashad, A. O. Govorov, T. Liedl. Hot spot-mediated non-dissipative and ultrafast plasmon passage, Nat Phys, 13 (2017) 761–765.
  6. P. Zhan, T. Wen, Z. G. Wang, Y. He, J. Shi, T. Wang, X. Liu, G. Lu, B. Ding. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering, Angew. Chem. Int. Ed. Engl., 57 (2018) 2846–2850.
  7. A. Puchkova, C. Vietz, E. Pibiri, B. Wunsch, M. Sanz Paz, G. P. Acuna, P. Tinnefeld. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 muM, Nano Lett., 15 (2015) 8354–8359.
  8. R. Chikkaraddy, V. A. Turek, N. Kongsuwan, F. Benz, C. Carnegie, T. van de Goor, B. de Nijs, A. Demetriadou, O. Hess, U. F. Keyser, J. J. Baumberg. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami, Nano Lett., 18 (2018) 405–411.
  9. M. Raab, C. Vietz, F. D. Stefani, G. P. Acuna, P. Tinnefeld. Shifting molecular localization by plasmonic coupling in a single-molecule mirage, Nat Commun, 8 (2017) 13966.
  10. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, T. Liedl. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, 483 (2012) 311–314.
  11. C. Zhou, X. Duan, N. Liu. A plasmonic nanorod that walks on DNA origami, Nat Commun, 6 (2015) 8102.
  12. A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A. O. Govorov, H. Sugiyama, M. Endo, N. Liu. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function, Nat Commun, 7 (2016) 10591.
  13. A. Mostafa, Y. Kanehira, A. Dutta, S. Kogikoski, Jr., I. Bald. Single-Molecule Surface-Enhanced Raman Scattering Measurements Enabled by Plasmonic DNA Origami Nanoantennas, J Vis Exp, (2023).
  14. C. Steinhauer, R. Jungmann, T. L. Sobey, F. C. Simmel, P. Tinnefeld. DNA origami as a nanoscopic ruler for super-resolution microscopy, Angew. Chem. Int. Ed. Engl., 48 (2009) 8870–8873.
  15. H. Ijas, S. Nummelin, B. Shen, M. A. Kostiainen, V. Linko. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems, Int J Mol Sci, 19 (2018).
  16. C. Zhou, X. Duan, N. Liu. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic, Acc. Chem. Res., 50 (2017) 2906–2914.
  17. Potapkin O. D. Projection electron beam lithography for nanotechnology / O. D. Potapkin, B. V. Troshin. Bulletin of the RAS: Physics. 2010; 74(7):1015 – 1019. doi: 10.3103/S1062873810070270. – EDN MXEPJL. Потапкин О. Д. Трошин Б. В. Проекционная электронно-лучевая литография для нанотехнологий. Известия РАН. Серия физическая. 2010; 74(7):1056–1060. EDN MTJICJ.
  18. Salashchenko N. N. Project for manufacturing a Russian EUV nanolithographer for the fabrication of chips according to technological standards of 22 nm / N. N. Salashchenko, N. I. Chkhalo. Bulletin of the RAS: Physics. 2011; 75(1): 44–48. doi: 10.3103/S1062873811010229. – EDN OHUXRX. Салащенко Н. Н. Проект изготовления российского ЭУФ-нанолитографа для производства СБИС по технологическим нормам 22 нм / Н. Н. Салащенко, Н. И. Чхало. Известия РАН. Серия физическая. 2011; 75(1): 49–53. EDN NDJNKB.
  19. Demina P.A., Khaydukov K.V., Rocheva V.V., Akasov R.A., Generalova A.N., Khaydukov E.V. Technology Of Infrared Photopolymerization. Photonics Russia. 2022; 16(8): 600–603. doi: 10.22184/1993-7296.FRos.2022.16.8.600.602. П. А. Демина, К. В. Хайдуков, В. В. Рочева [и др.]. Технология инфракрасной фотополимеризации. Фотоника. 2022; 16(8): 600–603. doi: 10.22184/1993-7296.FRos.2022.16.8.600.602. – EDN CDDTVR.
  20. Maydykovskiy A.I., Apostolov D.A., Mamonov E.A. et al. Two-Photon Laser Lithography of Functional Microstructures of Integrated Photonics: Waveguides, Microcavities, and Prism Input/Output Adapters of Optical Radiation. Jetp Lett. 2023;117: 32–37. https://doi.org/10.1134/S0021364022602743 Майдыковский, Д. А. Апостолов, Е. А. Мамонов [и др.]. Двухфотонная лазерная печать функциональных микроструктур интегральной фотоники: волноводов, микрорезонаторов и призменных адаптеров ввода/вывода оптического излучения. Письма в ЖЭТФ. 2023; 117(1-2(1):37–42. doi: 10.31857/S1234567823010044. – EDN NVEROV.
  21. Kolymagin, D.A., Chubich, D.A., Shcherbakov, D.A. et al. Waveguide Structures and Photon Splitters Fabricated via Direct (3 + 1)D Laser Printing. Bull. Russ. Acad. Sci. Phys. 2023; 87: 1779–1784. https://doi.org/10.1134/S1062873823704051 Д. А. Колымагин, Д. А. Чубич, Д. А. Щербаков [и др.]. Волноведущие структуры и фотонные разветвители, созданные методом прямого (3 + 1)D лазерного письма. Известия РАН. Серия физическая. 2023; 87(12):1695–1700. doi: 10.31857/S0367676523702927. – EDN QUWEWR.
  22. M. E. Stepanov, S. A. Khorkina, A. I. Arzhanov [et al.]. Near-field effects in nodes of a gold nanonet grown by laser ablation in superfluid helium: crossover between “hot spots“ such as «tip» and “gap. Jetp Lett. 2024; 120(3-4):231–237. doi: 10.31857/S0370274X24080129. – EDN UMVIVR. М. Е. Степанов, С. А. Хоркина, А. И. Аржанов [и др.]. Ближнеполевые эффекты в узлах золотой наносети, выращенной лазерной абляцией в сверхтекучем гелии: кроссовер между “горячими точками” типа “острие” и “зазор”. Письма в ЖЭТФ. 2024; 120(3-4):231–237. doi: 10.31857/S0370274X24080129. – EDN UMVIVR.
  23. Bukharov D. N., Osipov A. V., Kucherik A. O. et al. Modeling the Formation of Noble Metal Nanocluster Systems during Deposition from a Colloid Solution. Bull. Russ. Acad. Sci. Phys. 2023;87:1680–1686. https://doi.org/10.3103/S1062873823703884 Д. Н. Бухаров, А. В. Осипов, А. О. Кучерик, С. М. Аракелян. Моделирование процессов формирования систем нанокластеров благородных металлов при осаждении из коллоидного раствора. Известия РАН. Серия физическая. 2023; 87(11):1619–1625. doi: 10.31857/S0367676523702800. – EDN FTAUZO.
  24. Filippova Y. A., Bizhetskiy A. S., Papugaeva A. V. et al. FeNi Nanowires as a Promising Filler for Magnetic Sensitive Gel. Bull. Russ. Acad. Sci. Phys. 2023;87: 1483–1487. https://doi.org/10.3103/S1062873823703537. Ю. А. Филиппова, А. С. Бижецкий, А. В. Папугаева [и др.]. FeNi нанопроволоки как перспективный наполнитель магниточувствительного геля. Известия РАН. Серия физическая. 2023; 87(10):1452–1456. doi: 10.31857/S0367676523702538. – EDN PQEEQH.
  25. Yu. V. Filatov, A. S. Kukaev, V. Yu. Venediktov, A. A. Sevryugin, E. V. Shalymov. Microoptical Gyros Based on Whispering Gallery Mode Resonators. Photonics Russia. 2023;17(1): 26–44. doi: 10.22184/1993-7296.FRos.2023.17.1.26.44. – EDN HOAVAU. Ю. В. Филатов, А. С. Кукаев, В. Ю. Венедиктов, А. А. Севрюгин, Е. В. Шалымов. Микрооптические гироскопы на основе резонаторов мод шепчущей галереи. Фотоника. 2023;17(1): 26–44. doi: 10.22184/1993-7296.FRos.2023.17.1.26.44. – EDN HOAVAU.
  26. A. P. Tarasov, L. A. Zadorozhnaya, V. M. Kanevsky. The nature of optical amplification in small diameter ZnO microarrays with whispering gallery modes. Jetp Lett. 2024; 119(11–12): 875–881. doi: 10.31857/S1234567824120024. – EDN HMXNNM. А. П. Тарасов, Л. А. Задорожная, В. М. Каневский. Природа оптического усиления в микростержнях ZnO малого диаметра с модами шепчущей галереи. Письма в ЖЭТФ. 2024; 119(11–12): 875–881. doi: 10.31857/S1234567824120024. – EDN HMXNNM.
  27. V. A. Zheltikov, D. D. Platonov, S. Khydyrova, D. D. Vasilev, K. M. Moiseev. Review of Superconducting Microstrip Single-¬photon Detectors. Photonics Russia. 2022; 16(7):528–537. doi: 10.22184/1993-7296.FRos.2022.16.7.528.537. – EDN BYXUYO. В. А. Желтиков, Д. Д. Платонов, С. Хыдырова, К. М. Моисеев, Д. Д. Васильев. Обзор сверхпроводниковых микрополосковых однофотонных детекторов. Фотоника. 2022; 16(7):528–537. doi: 10.22184/1993-7296.FRos.2022.16.7.528.537. – EDN BYXUYO.
  28. M. S. Kovalev, I. M. Podlesnykh, K. E. Pevchikh, S. I. Kudryashov. NearInfrared Planar Photonics Based on Hyperdoped Silicon: Prospects. Photonics Russia. 2024;18(2):136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151. – EDN CGUVBX. М. С. Ковалев, И. М. Подлесных, К. Э. Певчих, С. И. Кудряшов. Планарная фотоника ближнего инфракрасного диапазона на основе сверхлегированного кремния: перспективы. Фотоника. 2024;18(2):136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151. – EDN CGUVBX.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Examples of using DNA origami in photonics: a) nanowaveguide for low-dissipative energy transfer through plasmon interaction (adapted with modifications from [5]); b) fabrication of SERS nanostructures in the form of bow-tie-shaped dimers (adapted with modifications from [6]); c) production of spherical dimers to enhance fluorescence (adapted with modifications from [7]); d) particle-on-mirror geometry to study local density with temperature changes in a hot station (adapted with modifications from [8]); e) in the world of single molecules, observed near plasmonic nanostructures (adapted with modifications from [9]); f) creation of optically active anisotropic plasmonic nanostructures (adapted with modifications from [10]); g) an example of dynamic DNA origami changing configuration in response to changes in solution composition (adapted with modifications from [11]); h) an example of a change in the configuration of DNA origami in response to light exposure (the figure is adapted with modifications from [12]).

Download (1MB)

Copyright (c) 2024 Stepanov M.E., Khokhryakova U.A., Egorova T.V., Magaryan K.A., Naumov A.V.