Intravital Microscopy – A Window Into The World Of Bioprocesses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article shows the potential of practical use of the dorsal skin fold optical microscopy method as an effective diagnostic technology for biosystems. It has been experimentally proved that even in the basic formulation, the presented method allows obtaining a large amount of useful research data in conditions as close as possible to native ones.

Full Text

Restricted Access

About the authors

М. Е. Stepanov

Moscow State Pedagogical University;

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0002-0332-1235
Russian Federation, Moscow; Moscow

А. А. Vlasov

Moscow State Pedagogical University

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0003-3899-3928
Russian Federation, Moscow

P. А. Demina

Moscow State Pedagogical University; Kurchatov Complex of Crystallography and Photonics, National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-6349-2979
Russian Federation, Moscow; Moscow; Moscow

R. А. Akasov

Moscow State Pedagogical University; Petrovsky National Research Center of Surgery; Kurchatov Complex of Crystallography and Photonics, National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; D. I. Mendeleev Russian University of Chemical Technology

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-6486-8114
Russian Federation, Moscow; Moscow; Moscow; Moscow; Moscow

G. Babaeva

Peoples’ Friendship University of Russia

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-5781-7925

Research Institute of Molecular and Cellular Medicine

Russian Federation, Moscow

V. I. Yusupov

Kurchatov Complex of Crystallography and Photonics, National Research Center “Kurchatov Institute”; P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0002-9438-6295
Russian Federation, Moscow; Moscow, Troitsk

Т. V. Egorova

Moscow State Pedagogical University; P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0002-3346-3242
Russian Federation, Moscow; Moscow, Troitsk

К. R. Karimullin

Moscow State Pedagogical University; P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch

Author for correspondence.
Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-6799-2479
Russian Federation, Moscow; Moscow, Troitsk

А. N. Generalova

National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-9646-1693

Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow; Moscow

А. V. Naumov

Moscow State Pedagogical University; P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0001-7938-9802
Russian Federation, Moscow; Moscow, Troitsk

Е. V. Khaydukov

Moscow State Pedagogical University; Petrovsky National Research Center of Surgery; Kurchatov Complex of Crystallography and Photonics, National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; D. I. Mendeleev Russian University of Chemical Technology

Email: kamil_karimullin@mail.ru
ORCID iD: 0000-0002-3900-2949
Russian Federation, Moscow; Moscow; Moscow; Moscow; Moscow

References

  1. Hu B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature. 2019; 574(7777):187–92. doi: 10.1038/s41586-019-1629-x.
  2. Naumov A. V. Low-temperature spectroscopy of organic molecules in solid matrices: from the Shpol’skii effect to laser luminescent spectromicroscopy for all effectively emitting single molecules. Phys. Usp. 2013;183(6):633–52. https://doi.org/10.3367/ufne.0183.201306f.0633 Наумов А. В. Спектроскопия органических молекул в твердых матрицах при низких температурах: от эффекта Шпольского к лазерной люминесцентной спектромикроскопии всех эффективно излучающих одиночных молекул. УФН. 2013;183(6):633–52. https://doi.org/10.3367/UFNr.0183.201306f.0633.
  3. Eremchev I. Y., Lozing N. A., Baev A. A., Tarasevich A. O., Gladush M. G., Rozhentsov A. A. et al. Luminescence Microscopy of Single Quantum Dot Pairs with Nanometer Spatial Resolution. JETP Letters. 2018;108(1):30–37. https://doi.org/10.1134/S0021364018130076 Еремчев И. Ю., Лозинг Н. А., Баев А. А., Тарасевич А. О., Гладуш М. Г., Роженцов А. А. и др. Люминесцентная микроскопия одиночных пар квантовых точек с нанометровым пространственным разрешением. Письма в ЖЭТФ. 2018;108(1):26–34. https://doi.org/10.1134/S0370274X18130064.
  4. Naumov A. V., Gorshelev A. A., Gladush M. G., Anikushina T. A., Golovanova A. V., Köhler J., Kador L. Micro–Refractometry and Local–Field Mapping with Single Molecules. Nano Letters. 2018:18(10)6129–34. https://doi.org/10.1021/acs.nanolett.8b01753.
  5. Karimullin K. R., Arzhanov A. I., Eremchev I. Y., Kulnitskiy B. A., Surovtsev N. V., Naumov A. V. Combined photon–echo, luminescence and Raman spectroscopies of layered ensembles of colloidal quantum dots. Laser Physics. 2019;29(12). https://doi.org/10.1088/1555–6611/ab4bdb.
  6. Karimullin K. R., Arzhanov A. I., Surovtsev N. V., Naumov A. V. Electron–Phonon Interaction in Composites with Colloidal Quantum Dots: A Study by Luminescence Spectroscopy and Raman Scattering. Optics and Spectroscopy. 2023;131(10)995–999. https://doi.org/10.1134/S0030400X2310010 Каримуллин К. Р., Аржанов А. И., Суровцев Н. В., Наумов А. В. Электрон-фононное взаимодействие в композитах с коллоидными квантовыми точками: исследование методами люминесцентной спектроскопии и комбинационного рассеяния света. Оптика и спектроскопия. 2022;130(1):146–150. https://doi.org/10.21883/os.2022.01.51902.42–21.
  7. Eskova A. E., Arzhanov A. I., Magaryan K. A., Karimullin K. R., Naumov A. V. Effect of Concentration on the Spectral–Luminescent Properties of Quantum Dots in Colloidal Solutions. Bulletin of the Russian Academy of Sciences: Physics. 2020;84(1):40–3. https://doi.org/10.3103/S1062873820010116). Еськова А. Е., Аржанов А. И., Магарян К. А., Каримуллин К. Р., Наумов А. В. Исследование влияния концентрации квантовых точек в коллоидном растворе на его спектрально–люминесцентные свойства. Известия РАН. Серия физическая. 2020;84(1):48–51. https://doi.org/10.31857/S036767652001012
  8. Arzhanov A. I., Savostianov A. O., Magaryan K. A., Karimullin K. R., Naumov A. V. Photonics of semiconductor quantum dots: Applied aspects. Photonics Russia. 2022;16(2): 96–113. https://doi.org/10.22184/1993-7296.FRos.2022.16.2.96.112 Аржанов А. И., Савостьянов А. О., Магарян К. А., Каримуллин К. Р., Наумов А. В. Фотоника полупроводниковых квантовых точек: прикладные аспекты. Фотоника. 2022;16(2): 96–113. https://doi.org/10.22184/1993-7296.FRos.2022.16.2.96.112
  9. Generalova A. N., Demina P. A., Akasov R. A., Khaydukov K. V. Photopolymerization in 3D printing of tissue–engineered constructs for regenerative medicine. Russian Chemical Reviews. 2023;92(2): RCR5068. https://doi.org/10.57634/RCR5068 Генералова А. Н., Демина П. А., Акасов Р. А., Хайдуков Е. В. Фотополимеризация в 3D–печати тканеинженерных конструкций для регенеративной медицины. Успехи химии. 2023;92(2): RCR5068. https://doi.org/10.57634/RCR5068
  10. Demina P. A., Khaydukov K. V., Rocheva V. V., Akasov R. A., Generalova A. N., Khaydukov E. V. Technology of Infrared Photopolymerization. 2022. Photonica Russia. 2022;16(8)600–2. https://doi.org/10.22184/1993-7296.FRos.2022.16.8.600.602. Демина П. А., Хайдуков К. В., Рочева В. В., Акасов Р. А., Генералова А. Н., Хайдуков Е. В. Технология инфракрасной фотополимеризации. Фотоника. 2022;16(8)600–2. https://doi.org/10.22184/1993-7296.FRos.2022.16.8.600.602.
  11. Bugay A. N. Biological Action of Intense Laser Pulses at the Molecular Level. Bulletin of the Russian Academy of Sciences: Physics. 2024;88(6)842–6. https://doi.org/10.1134/S1062873824706718.
  12. Leontyev A. V., Nurtdinova L. A., Mityushkin E. O., Shmelev A. G., Zharkov D. K., Andrianov V. V., Muranova L. N., Gainutdinov Kh.L., Nikiforov V. G. Testing Nanosensors Based on NaYF4: Yb, Er for Measuring Temperature in Biological Media. Bulletin of the Russian Academy of Sciences: Physics. 2024;88(6):853–8. https://doi.org/10.1134/S1062873824706731.
  13. Eremchev M. Yu. Second Harmonic Generation as a Noninvasive Method to Study Molecular Processes on the Surface of Lipid Membranes (Brief Review). JETP Letters. 2023;118(4):288–95. https://doi.org/10.1134/S0021364023602245. Еремчев М. Ю. Генерация второй гармоники как неинвазивный метод исследования молекулярных процессов на поверхности липидных мембран (миниобзор). Письма в ЖЭТФ. 2023;118(4):282–90. https://doi.org/10.31857/S1234567823160103
  14. Starodubtsev N. F., Denisenko V. I., Karimullin K. R., Kurdoglian M. S., Lysenko S. A., Naumov A. V., Tagabilev D. G., Yuryshev N. N. Theoretical substantiation of the thermal mechanism of local oxygenation of biological tissue under the action of low-intensity near-infrared radiation. Medical physics. 2023;4:78–83. https://doi.org/10.52775/1810-200X-2023-99-100-4-78-83. Стародубцев Н. Ф., Денисенко В. И., Каримуллин К. Р., Курдоглян М. С., Лысенко С. А., Наумов А. В., Тагабилев Д. Г., Юрышев Н. Н. Теоретическое обоснование теплового механизма локальной оксигенации биологической ткани под действием низкоинтенсивного излучения ближнего ИК диапазона. Медицинская физика. 2023;4:78–83. https://doi.org/10.52775/1810-200X-2023-99-100-4-78-83.
  15. Turchin I. V. Methods of biomedical optical imaging: from subcellular structures to tissues and organs. Phys. Usp. 2016;59(5):487–501. https://doi.org/10.3367/UFNe.2015.12.037734. Турчин И. В. Методы оптической биомедицинской визуализации: от субклеточных структур до тканей и органов. Успехи физических наук. 2016;186(5):550–67. https://doi.org/10.3367/UFNr.2015.12.037734
  16. Smith A. M., Mancini M. C., Nie S. Bioimaging: second window for in vivo imaging. Nature Nanotechnology. 2009;4(11):710–1. https://doi.org/10.1038/nnano.2009.326.
  17. Coste A., Oktay M. H., Condeelis J. S., Entenberg D. Intravital Imaging Techniques for Biomedical and Clinical Research. Cytometry A. 2020;97(5)448–57. https://doi.org/10.1002/cyto.a.23963.
  18. Kienle K., Lammermann T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol Review. 2016;273(1):76–93. https://doi.org/10.1111/imr.12458.
  19. Jing Y., Zhang C., Yu B., Lin D., Qu J. Super–Resolution Microscopy: Shedding New Light on In Vivo Imaging. Frontiers in Chemistry. 2021;9:746900. https://doi.org/10.3389/fchem.2021.746900.
  20. Laschke M. W., Menger M. D. The dorsal skinfold chamber: A versatile tool for preclinical research in tissue engineering and regenerative medicine. European Cells & Materials. 2016;32:202–15. https://doi.org/10.22203/eCM.v032a13.
  21. Stepanov M. E., Vlasov A. A., Vinokurov I. A., Tagabilev D. G., Kotenko K. V., Khaydukov E. V., Naumov A. V., Yusupov V. I. Device for fixing a small laboratory animal with a dorsal camera installed during microscopic examination. Application for the invention of the Russian Federation. 2024. No. 2024127009. Степанов М. Е., Власов А. А., Винокуров И. А., Тагабилев Д. Г., Котенко К. В., Хайдуков Е. В., Наумов А. В., Юсупов В. И. Устройство для фиксации мелкого лабораторного животного с установленной дорсальной камерой при проведении микроскопического исследования. Заявка на изобретение РФ. 2024. № 2024127009.
  22. Xie W., Lorenz M., Poosch F., Palme R., Zechner D., Vollmar B., Grambow E., Struder D. 3D–printed lightweight dorsal skin fold chambers from PEEK reduce chamber–related animal distress. Scientific Reports. 2022;12(1):11599. https://doi.org/10.1038/s41598-022-13924-5.
  23. Sckell A., Leunig M. The Dorsal Skinfold Chamber: Studying Angiogenesis by Intravital Microscopy. In: Murray C., Martin S. (eds) Angiogenesis Protocols. Methods in Molecular Biology. 2009;467:305–17. https://doi.org/10.1007/978-1-59745-241-0_19.
  24. Johnson J. M., Kellogg D. L. Jr. Local thermal control of the human cutaneous circulation. Journal of Applied Physiology. 2010;109(4):1229–38. https://doi.org/10.1152/japplphysiol.00407.2010.
  25. Jarvilehto M., Tuohimaa P. Vasa vasorum hypoxia: initiation of atherosclerosis. Medical Hypotheses. 2009;73(1):40–1. https://doi.org/10.1016/j.mehy.2008.11.046.
  26. Kuhel D. G., Konaniah E. S., Basford J. E., McVey C., Goodin C. T., Chatterjee T. K., Weintraub N. L., Hui D. Y. Apolipoprotein E2 accentuates postprandial inflammation and diet–induced obesity to promote hyperinsulinemia in mice. Diabetes. 2013;62(2):382–91. https://doi.org/10.2337/db12-0390.
  27. Honkura N., Richards M., Lavina B., Sainz–Jaspeado M., Betsholtz C., Claesson–Welsh L. Intravital imaging–based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nature Communications. 2018;9(1):2746. https://doi.org/10.1038/s41467-018-04929-8.
  28. Giampetraglia M., Weigelin B. Recent advances in intravital microscopy for preclinical research. Current Opinion in Chemical Biology. 2021;63:200–8. https://doi.org/10.1016/j.cbpa.2021.05.010.
  29. Ishii M. Intravital imaging technology reveals immune system dynamics in vivo. Allergology International. 2016;65(3):225–7. https://doi.org/ 10.1016/j.alit.2016.05.001.
  30. Lin Q., Choyke P. L., Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics. 2023;13(15):5223–46. https://doi.org/10.7150/thno.84947.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental scheme: a mouse with a dorsal chamber installed is fixed on a special stage, which is installed in a microscope for research. To implement this approach, a standard optical microscope can be used to study cells and tissue histology

Download (127KB)
3. Fig. 2. An image created by light-field microscopy in white light of the biological tissue of a living mouse in the observation window of the dorsal chamber: a) obtained at low magnification (red dots indicate sequential branching of a large vessel, green dots indicate vasa vasorum vessels, blue dots indicate a deeper layer of adipose (fat) tissue; b) obtained at a higher magnification (the red dotted line marks the elements of adipose tissue (in the insert – size distribution of adipocytes)

Download (172KB)
4. Fig. 3. Image of a section of the vascular network at low magnification: a) light-field; b) fluorescent (coloring with Cy-5-amine fluorescent dye)

Download (288KB)
5. Fig. 4. Determination of the trajectories of individual blood cells continuously circulating through arterioles and capillaries: a) the image obtained during the experiment illustrates the position of individual-colored components of the blood flow; b) total 30 sec-accumulated distribution of blood cells marked with fluorescent dye positions (each purple circle corresponds to the position of cells identified in individual frames on Fig. 4a)

Download (149KB)

Copyright (c) 2024 Stepanov М.Е., Vlasov А.А., Demina P.А., Akasov R.А., Babaeva G., Yusupov V.I., Egorova Т.V., Karimullin К.R., Generalova А.N., Naumov А.V., Khaydukov Е.V.