Analysis of polylactide-based materials by raman spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We present Raman study of a number of polylactide-based materials: polylactide stereoisomers, L-lactide oligomers, L-lactide/ε-caprolactone copolymers, and poly(L-lactide)/hydroxyapatite composites. It is established that the composition and crystallinity degree of a wide range of polylactide-based materials can be determined by Raman spectra. The advancement of this technique is crucial for the development of innovative polylactide-based materials used both for diverse medical applications and, for example, in the creation of biodegradable disposable packaging to address environmental pollution problems.

Full Text

Restricted Access

About the authors

S. О. Liubimovskii

Prokhorov General Physics Institute of the RAS

Author for correspondence.
Email: liubimovskii@kapella.gpi.ru
ORCID iD: 0000-0002-9332-4359
Russian Federation, Moscow

V. S. Novikov

Prokhorov General Physics Institute of the RAS

Email: liubimovskii@kapella.gpi.ru
ORCID iD: 0000-0002-3304-1568

Cand.of Sciences (Phys.-Math.)

Russian Federation, Moscow

D. D. Vasimov

Prokhorov General Physics Institute of the RAS; Moscow Institute of Physics and Technology

Email: liubimovskii@kapella.gpi.ru
ORCID iD: 0009-0002-8105-0124
Russian Federation, Moscow; Moscow Region, Dolgoprudny

S. M. Kuznetsov

Prokhorov General Physics Institute of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0002-7669-1106

Cand.of Sciences (Phys.-Math.)

Russian Federation, Moscow

Е. V. Anokhin

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0009-0005-2392-6994
Russian Federation, Moscow

А. V. Bakirov

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0003-0798-2791

Cand. of Sciences (Phys.-Math.)

Russian Federation, Moscow

К. Т. Kalinin

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0001-8838-5520
Russian Federation, Moscow

V. А. Demina

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0009-0003-7302-1048

Cand.of Sciences (Phys.-Math.)

Russian Federation, Moscow

N. G. Sedush

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0002-6744-7662

Cand.of Sciences (Phys.-Math.)

Russian Federation, Moscow

S. N. Chvalun

Enikolopov Institute of Synthetic Polymeric Materials of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0001-9405-4509

Dr. of Sciences (Chem.), Corresponding Member of the RAS

Russian Federation, Moscow

М. N. Moskovskii

Federal Scientific Agronomic and Engineering Center VIM

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0001-5727-8706

Dr. of Sciences (Tech.), prof. of the RAS

Russian Federation, Moscow

G. Yu. Nikolaeva

Prokhorov General Physics Institute of the RAS

Email: nikolaeva@kapella.gpi.ru
ORCID iD: 0000-0001-5979-9126

Cand.of Sciences (Phys.-Math.)

Russian Federation, Moscow

References

  1. Xue W. Bioplastics: potential substitution to fossil-based plastics. Marine Plastics Abatement. IWA Publishing. 2023; 2(10): 371–432. doi: 10.2166/9781789063448_0371.
  2. Arzhakova O. V., Arzhakov M. S., Badamshina E. R., Bryuzgina E. B., Bryuzgin E. V., Bystrova A. V., Vaganov G. V., Vasilevskaya V. V., Vdovichenko A.Yu., Gallyamov M. O., Gumerov R. A., Didenko A. L., Zefirov V. V., Karpov S. V., Komarov P. V., Kulichikhin V. G., Kurochkin S. A., Larin S. V., Malkin A.Ya., Milenin S. A., Muzafarov A. M., Molchanov V. S., Navrotskiy A. V., Novakov I. A., Panarin E. F., Panova I. G., Potemkin I. I., Svetlichny V. M., Sedush N. G., Serenko O. A., Uspenskii S. A., Philippova O. E., Khokhlov A. R., Chvalun S. N., Sheiko S. S., Shibaev A. V., Elmanovich I. V., Yudin V. E., Yakimansky A. V., Yaroslavov A. A. Polymers For The Future. Russian Chemical Reviews. 2022; 91(12): RCR5062. doi: 10.57634/RCR5062. Аржакова О. В., Аржаков М. С., Бадамшина Э. Р., Брюзгина Е. Б., Брюзгин Е. В., Быстрова А. В., Ваганов Г. В., Василевская В. В., Вдовиченко А. Ю., Галлямов М. О., Гумеров Р. А., Диденко А. Л., Зефиров В. В., Карпов С. В., Комаров П. В., Куличихин В. Г., Курочкин С. А., Ларин С. В., Малкин А. Я., Миленин С. А., Музафаров А. М., Молчанов В. С., Навроцкий А. В., Новаков И. А., Панарин Е. Ф., Панова И. Г., Потемкин И. И., Светличный В. М., Седуш Н. Г., Серенко О. А., Успенский С. А., Филиппова О. Е., Хохлов А. Р., Чвалун С. Н., Шейко С. С., Шибаев А. В., Эльманович И. В., Юдин В. Е., Якиманский А. В., Ярославов А. А. Полимеры будущего. Успехи химии. 2022; 91(12): RCR5062. doi: 10.57634/RCR5062.
  3. da Silva Pens C. J., Klug T. V., Stoll L., Izidoro F., Flores S. H., de Oliveira Rios A. Poly (lactic acid) and its improved properties by some modifications for food packaging applications: A review. Food Packaging and Shelf Life. 2024; 41: 101230. doi: 10.1016/j.fpsl.2023.101230.
  4. Han Lyn F., Ismail-Fitry M.R., Noranizan M. A., Tan T. B., Nur Hanani Z. A. Recent advances in extruded polylactic acid-based composites for food packaging: A review. International Journal of Biological Macromolecules. 2024; 266(2): 131340. doi: 10.1016/j.ijbiomac.2024.131340.
  5. Arif Z. U., Muhammad Y. K., Noroozi R., Sadeghianmaryan A., Jalalvand M., Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. International Journal of Biological Macromolecules. 2022; 218: 930–968. doi: 10.1016/j.ijbiomac.2022.07.140.
  6. Gomzyak V. I., Sedush N. G., Puchkov A. A., Polyakov D. K., Chvalun S. N. Linear and branched lactide polymers for targeted drug delivery systems. Polymer Science, Series B. 2021; 63: 257–271. doi: 10.1134/S1560090421030064. Гомзяк В. И., Седуш Н. Г., Пучков А. А., Поляков Д. К., Чвалун С. Н. Линейные и разветвленные полимеры лактида для систем направленной доставки лекарственных средств. Высокомолекулярные соединения (серия Б). 2021; 63(3):190–206. doi: 10.31857/S2308113921030062.
  7. Sedush N. G., Kadina Y. A., Razuvaeva E. V., Puchkov A. A., Shirokova E. M., Gomzyak V. I., Kalinin K. T., Kulebyakina A. I., Chvalun S. N. Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures. Nanobiotechnology Reports. 2021; 16, 421–438. doi: 10.1134/S2635167621040121. Седуш Н. Г., Кадина Ю. А., Разуваева Е. В., Пучков А. А., Широкова Е. М., Гомзяк В. И., Калинин К. Т., Кулебякина А. И., Чвалун С. Н. Наносомальные лекарственные формы на основе биоразлагаемых сополимеров лактида с различной молекулярной структурой и архитектурой. Российские нанотехнологии. 2021; 16(4):462–481. doi: 10.1134/S1992722321040117.
  8. Liubimovskii S. O., Novikov V. S., Sagitova E. A., Kuznetsov S. M., Bakirov A. V., Dmitryakov P. V., Sedush N. G., Chvalun S. N., Ustynyuk L.Yu., Kuzmin V. V., Vasimov D. D., Moskovskiy M. N., Nikolaeva G. Yu. Raman evaluation of the crystallinity degree and composition of poly(L-lactide-co-ε-caprolactone). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024; 310: 123876. doi: 10.1016/j.saa.2024.123876.
  9. Liubimovskii S. O., Novikov V. S., Vasimov D. D., Kuznetsov S. M., Sagitova E. A., Dmitryakov P. V., Bakirov A. V., Sedush N. G., Chvalun S. N., Moskovskiy M. N., Nikolaeva G. Yu. Raman Evaluation of the Crystallinity Degree of Poly(L-Lactide)-Based Materials. Physics of Wave Phenomena. 2024; 32(2): 140–149. doi: 10.3103/S1541308X24700080.
  10. Liubimovskii S. O., Novikov V. S., Anokhin E. V., Kuznetsov S. M., Bakirov A. V., Demina V. A., Sedush N. G., Chvalun S. N., Moskovskiy M. N., Gudkov S. V., Nikolaeva G. Yu. Raman structural analysis of L-lactide/ε-caprolactone copolymers and poly(L-lactide)/poly(ε-caprolactone) blends. Submitted to Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
  11. Liubimovskii S. O., Ustynyuk L.Yu., Novikov V. S., Kalinin K. T., Sedush N. G., Chvalun S. N., Gudkov S. V., Moskovskiy M. N., Nikolaeva G. Yu. DFT modeling of L-lactide decamer structure and Raman spectrum with electron density functionals of hybrid and GGA type. Physics of Wave Phenomena. 2024; 32(6): 423–430. doi: 10.3103/S1541308X24700420.
  12. Sedush N., Kalinin K., Puchkov A., Chvalun S. Synthesis and UV Cross-Linking of Methacrylated Linear and Star-Shaped Lactide Oligomers as Potential Biodegradable Resins for Stereolithography. Macromolecular Symposia. 2022; 404: 2100380. doi: 10.1002/masy.202100380.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Raman spectra of the neat PLLA and their characteristics: a) with different CD in the range of 80–980 cm–1; b) dependence of the ratio of the peak intensities of the PLLA Raman bands at 411 and 874 cm–1 on CD, measured by X-ray diffraction analysis

Download (377KB)
3. Fig. 2. Raman spectra of the LLA/CL copolymers with different compositions and their characteristics: a) in the range of 2 500–3 300 cm–1; b) dependence of the ratio of the peak intensity of the PLLA Raman band at 2 947 cm–1 to the sum of the peak intensities of this band and the PCL Raman band at 2 914 cm–1 on the molar content of LLA, measured by NMR spectroscopy

Download (384KB)
4. Fig. 3. Raman spectra of PLLA, PDLA, and PDLLA (the ratio of the contents of D- and L-units is 50 : 50): a) range 80–1 410 cm–1; b) range 1 405–1 950 cm–1; c) range 2 575–3 200 cm–1

Download (600KB)
5. Fig. 4. Raman spectra of LLA oligomers with 10, 40 and 100 lactic acid units, PLLA, toluene, and normal alkane C12H26 (n-dodecane): a) range 80–1 410 cm–1; b) range 1 405–1 950 cm–1; c) – range 2 575–3 200 cm–1

Download (621KB)
6. Fig. 5. Raman spectra of the PLLA/HA composites with various compositions and their characteristics: a) in the range of 100–1 410 cm–1; b) dependence of the ratio of the peak intensities of the HA Raman band at 962 cm–1 and the PLLA Raman band at 874 cm–1 on the mass content of HA

Download (352KB)

Copyright (c) 2025 Liubimovskii S.О., Novikov V.S., Vasimov D.D., Kuznetsov S.M., Anokhin Е.V., Bakirov А.V., Kalinin К.Т., Demina V.А., Sedush N.G., Chvalun S.N., Moskovskii М.N., Nikolaeva G.Y.