Changes in the Polycrystalline Alloy Microstructure Under Impact Action of Short Laser Pulses
- Authors: Likhanskiy V.V.1,2, Ulybyshev K.E.1,2, Elkin N.N.1, Khorokhorin M.V.1,2
-
Affiliations:
- Research Center “Kurchatov Institute”
- Lebedev Physical Institute of the Russian Academy of Sciences
- Issue: Vol 19, No 3 (2025)
- Pages: 210-222
- Section: Technologies & Technology Equipment
- URL: https://journals.eco-vector.com/1993-7296/article/view/682911
- DOI: https://doi.org/10.22184/1993-7296.FRos.2025.19.3.210.222
- ID: 682911
Cite item
Abstract
A review of publications devoted to the application of pulsed laser radiation in the field of technologies has been performed. The advantages of laser shock peening of the processed product surfaces have been considered. The developmental model of point defects and dislocations under the shock-wave load of polycrystalline materials has been proposed. The high-quality compliance between the calculated dislocation density and experimental results related to the laser shock peening of AMg6 samples has been obtained.
Keywords
Full Text

About the authors
Vladimir V. Likhanskiy
Research Center “Kurchatov Institute”; Lebedev Physical Institute of the Russian Academy of Sciences
Email: likhanskiy2020@mail.ru
Doctor of Physical and Mathematical Sciences, lead researcher, Laboratory of Physics of Nonequilibrium Processes in Materials, Troitsk separate subdivision
Russian Federation, Moscow; MoscowKonstantin E. Ulybyshev
Research Center “Kurchatov Institute”; Lebedev Physical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: Ulybyshev_KE@nrcki.ru
PhD in Physics and Mathematics, research engineer, Laboratory of Physics of Nonequilibrium Processes in Materials, Troitsk separate subdivision
Russian Federation, Moscow; MoscowNikolay N. Elkin
Research Center “Kurchatov Institute”
Email: elkin_nn@mail.ru
Doctor of Physical and Mathematical Sciences
Russian Federation, MoscowMaxim V. Khorokhorin
Research Center “Kurchatov Institute”; Lebedev Physical Institute of the Russian Academy of Sciences
Email: m.khorokhorin@lebedev.ru
research assistant, Laboratory of Physics of Nonequilibrium Processes in Materials, Troitsk separate subdivision
Russian Federation, Moscow; MoscowReferences
- Arutyunyan R. V., Baranov V. YU., Bol’shov L. A. et al. Vozdejstvie lazernogo izlucheniya na materialy /Otv. red. Velihov E. P.. – M.: Nauka. 1989. 368 p. Арутюнян Р. В., Баранов В. Ю., Большов Л. А. и др. Воздействие лазерного излучения на материалы /Отв. ред. Е. П. Велихов. – М.: Наука. 1989. 368 с.
- Gladush G. G., Smurov I. YU. Fizicheskie osnovy lazernoj obrabotki materialov. – M.: FIZMATLIT. 2017. 592p. ISBN 978-5-9221-1712-8. Гладуш Г. Г., Смуров И. Ю. Физические основы лазерной обработки материалов. – М.: ФИЗМАТЛИТ. 2017. 592с. ISBN 978-5-9221-1712-8.
- Kuryntsev S. V., Shiganov I. N. Laser Welding of Dissimilar Metals. Photonics Russia. 2020; 14(6): 492–506. doi: 10.22184/1993-7296.FRos.2020.14.6.492.506. Курынцев С. В., Шиганов И. Н. Лазерная сварка разнородных металлов. Обзор. Часть I. Фотоника. 2020; 14(6): 492–506. doi: 10.22184/1993-7296.FRos.2020.14.6.492.506.
- Kuryntsev S. V., Shiganov I. N. Dissimilar Metal Laser Welding. Review. Part 2. Photonics Russia. 2021; 15(1): 30–44. doi: 10.22184/1993-7296.FRos.2021.15.1.30.44. Курынцев С. В., Шиганов И. Н. Лазерная сварка разнородных металлов. Обзор. Часть II. Фотоника. 2021; 15(1): 30–44. doi: 10.22184/1993-7296.FRos.2021.15.1.30.44.
- Chen G. X., Kwee T. J., Tan K. P. et al. Laser cleaning of steel for paint removal. Appl. Phys. A. 2010;101: 249–253. doi: 10.1007/s00339-010-5811-0.
- AlShaer A. W., Li L., Mistry A. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture. Optics & Laser Technology. 2014; 64: 162–171. doi: 10.1016/j.optlastec.2014.05.010.
- Majorov V. S. Lazernoe uprochnenie metallov. V kn. «Lazernye tekhnologii obrabotki materialov: sovremennye problemy fundamental’nyh issledovanij i prikladnyh razrabotok» / Pod red. V.YA. Panchenko. – M.: FIZMATLIT. 2009. 664 p. Майоров В. С. Лазерное упрочнение металлов. В кн. «Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований и прикладных разработок» / Под ред. В. Я. Панченко. – М.: ФИЗМАТЛИТ. 2009. 664 с.
- Batsanov S. S. Shock and Materials. Chapter 3. Laser-Induced Shock Compession. – Springer Singapore. 2018. ISBN 978-981-10-7885-9. doi: 10.1007/978-981-10-7886-6.
- YAres’ko S.I., Goryainov D. S. Modelirovanie processa lazernogo uprochneniya rezhushchego instrumenta. Izvestiya Samarskogo nauchnogo centra RAN. 2011; 13№ 4(3): 921–926. Яресько С. И., Горяинов Д. С. Моделирование процесса лазерного упрочнения режущего инструмента. Известия Самарского научного центра РАН. 2011; 13№ 4(3): 921–926.
- Korotkov V. A. Poverhnostnaya plazmennaya zakalka. – Nizhnij Tagil: Nizhnetagil’skij tekhnologicheskij institut (filial UrFU). 2012. 64 p. Коротков В. А. Поверхностная плазменная закалка. – Нижний Тагил: Нижнетагильский технологический институт (филиал УрФУ). 2012. 64 с.
- Hirth J., Lothe J. Theory of Dislocations. – New York: McGraw-Hill, 1968. 780 p. Хирт Дж., Лоте И. Теория дислокаций /Перевод с английского под ред. Э. М. Надгорного и Ю. А. Осипьяна. – М.: Атомиздат. 1972. 600 c.
- Askaryon G. A., Morez E. M. Generation of elastic waves by transient surface heating. JETP Lett. 1963;16:1638–1644.
- Gujba A. K., Medraj M. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening. Engineering, Materials Science. 10 December. 2014;7:7925–7974. doi: 10.3390/ma7127925.
- Wang F. et al. Localized plasticity in silicon carbide ceramics induced by laser shock processing. Materialia. 2019; 6: 100265. doi: 10.1016/j.mtla.2019.
- Meyers M. A., Jarmakani H., Bringa E. M., Remington B. A. Dislocations in Shock Compression and Release. – The Netherlands: Elsevier, North-Holland. 2009; 91–197.
- Bringa E. M., Caro A., Victoria M., Park N. Atomistic Modeling of Wave Propagation in Nanocrystals. Journal of Metals. 2005; 57: 67–70. doi: 10.1007/s11837-005-0119-9
- Nandedkar A. S. Diffusion Characteristics of Vacancies in Aluminum Interconnects. MRS Online Proceedings Library (OPL). Volume 291: Symposium O – Materials Theory and Modeling. 1992; 291: 361. doi: 10.1557/PROC-291-361. URL:[https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/listing].
- Osiko V. V., Shcherbakov I. A. Solid-State Lasers. Part II. Fotonika. 2013; 4: 24–44. Осико В. В., Щербаков И. А. Твердотельные лазеры. Часть II. Фотоника. 2013; 4: 24–44.
- Mehrer H., Luckabauer M., Sprengel W. Self- and Solute Diffusion, Interdiffusion and Thermal Vacancies in the System Iron-Aluminium. Defect and Diffusion Forum. Vol. 331. doi: 10.4028/ href='www.scientific.net/DDF.331' target='_blank'>www.scientific.net/DDF.331
- Grabowski S., Kadau K., Entel P. Atomistic modeling of diffusion in aluminum. Phase Transitions. 2002; 75 (1–2): 265–272.
- Bakulin I. A., Kuznecov S. I., Panin A. S., Tarasova E. YU. Lazernaya udarnaya obrabotka splava AMg6 bez zashchitnogo pokrytiya. Fizika i himiya obrabotki materialov. 2021; 1: 31–39. doi: 10.30791/0015-3214-2021-1-31-39. Бакулин И. А., Кузнецов С. И., Панин А. С., Тарасова Е. Ю. Лазерная ударная обработка сплава АМг6 без защитного покрытия. Физика и химия обработки материалов. 2021; 1: 31–39. doi: 10.30791/0015-3214-2021-1-31-39.
- Bakulin I. A., Kakovkina N. G., Kuznetsov S. I., Panin A. S., Tarasova E. Yu. Structure and Residual Stresses in the AMg6 Alloy after Laser Shock Processing. Inorganic materials: applied research. 2021; 12 (1): 55–60. doi: 10.1134/S2075113321010032.
- Bakulin I. A., Kuznetsov S. I., Panin A. S. et al. Effect of Preliminary Heat Treatment on the Formation of Structure and Residual Stresses in the AMg6 Alloy at Laser Shock Peening Without Coating. Journal of Russian Laser Research. 2024; 45:237–248. doi: 10.1007/s10946-024-10207-4.
- Lihanskij V. V., Ulybyshev K. E., Elkin N. N. Numerical simulations of the processes induced by laser shock peening in AMg6 aluminum alloy. Aviation Materials and Technologies. 2025;79(2):33–47. doi: 10.18577/2713-0193-2025-0-2-33-47. Лиханский В. В., Улыбышев К. Е., Елкин Н. Н. Численное моделирование процессов при лазерном ударном упрочнении алюминиевого сплава АМг6. Авиационные материалы и технологии. 2025;79(2):33–47. doi: 10.18577/2713-0193-2025-0-2-33-47.
Supplementary files
