Single Photon Sources. Review Part 4
- Authors: Krishtop V.G.1,2,3
-
Affiliations:
- JSC “InfoTeСS”
- Moscow Institute of Physics and Technology (MIPT)
- Institute of Microelectronics Technology and High Purity Materials RAS
- Issue: Vol 19, No 3 (2025)
- Pages: 232-246
- Section: Quantum Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/682917
- DOI: https://doi.org/10.22184/1993-7296.FRos.2025.19.3.232.246
- ID: 682917
Cite item
Abstract
This review discusses various development methods for the single-photon sources (SPS).Earlier, the first part of the review (Photonics Russia. 2024; 18(5): 376–396) has discussed the requirements for single-photon sources and their characteristic criteria, and described the single-photon sources based on the single ions and single atoms. The second part of the review (Photonics Russia. 2024; 18(8): 610–620) has considered the SPSs based on the quantum dots and on the color centers in crystals. The third part (Photonics Russia. 2025; 19(1): 28–38) has considered the single-photon sources based on the carbon nanotubes and defects in them (defect engineering in nanotubes), on the nanocrystals and layered nanocrystals. The final section examines the single-photon sources on the collective states in the ensemble systems, on the single molecules and metal ions in a polymer matrix, as well as the sources on nonlinear crystals.
Full Text

About the authors
Vladimir G. Krishtop
JSC “InfoTeСS”; Moscow Institute of Physics and Technology (MIPT); Institute of Microelectronics Technology and High Purity Materials RAS
Author for correspondence.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Cand. of Sciences (Phys.&Math.)
Russian Federation, Moscow; Dolgoprudny, Moscow region; Chernogolovka, Moscow regionReferences
- М. К. Есеев, И. Н. Мешков. Ловушки для накопления заряженных частиц и античастиц в прецизионных экспериментах. Успехи физических наук, 2016, Т. 186, № 3, cc. 321–335. https://doi.org/10.3367/UFNr.0186.201603f.0321 M. K. Eseev, I. N. Meshkov. Traps for storing charged particles and antiparticles in high-precision experiments, Physics-Uspekhi, 2016, vol. 59, no. 3, pp. 304–317. https://doi.org/10.3367/UFNe.0186.201603f.0321
- F. G. Major, V. N. Gheorghe, G. Werth. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement. Springer-Verlag Berlin, 2005. https://doi.org/10.1007/b137836
- G. Werth, V. N. Gheorghe, F. G. Major. Charged Particle Traps II: Applications. Berlin: Springer, 2009. https://doi.org/10.1007/978-3-540-92261-2
- C. W. Chou, S. V. Polyakov, A. Kuzmich, H. J. Kimble. Single-Photon Generation from Stored Excitation in an Atomic Ensemble». Phys. Rev. Lett., 2004, 92, 213601. http://dx.doi.org/10.1103/PhysRevLett.92.213601
- D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, A. Kuzmich. Deterministic Single Photons via Conditional Quantum Evolution». Phys. Rev. Lett., 2006, 97, 013601. http://dx.doi.org/10.1103/PhysRevLett.97.013601
- C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Philips, A. S. Zibrov, M. D. Lukin. Atomic Memory for Correlated Photon States. Science, 2003, 301, 196. http://dx.doi.org/10.1126/science.1085946
- A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles». Nature, 2003, 423, 731. http://dx.doi.org/10.1038/nature01714
- T. Bienaimé, N. Piovella, R. Kaiser. Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems. Phys. Rev. Lett., 2012, 108, 123602. https://doi.org/10.1103/PhysRevLett.108.123602
- B. Jing. Interaction between Single Photons and Atomic Ensembles. In: Quantum Network with Multiple Cold Atomic Ensembles. Springer Theses. Springer, Singapore 2022. https://doi.org/10.1007/978-981-19-0328-1_2
- R. H. Dicke. Coherence in Spontaneous Radiation Processes, Phys. Rev., 1954, 93, 99. https://doi.org/10.1103/PhysRev.93.99
- M. Gross, S. Haroche. Superradiance: An essay on the theory of collective spontaneous emission. Physics Reports, 1982, 93(5), 301–396. https://doi.org/10.1016/0370-1573(82)90102-8
- T. Bienaimé, N. Piovella, R. Kaiser. Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems. Phys. Rev. Lett., 2012, 108(12). http://dx.doi.org/10.1103/PhysRevLett.108.123602
- M. O. Scully, A. A. Svidzinsky. The Super of Superradiance, Science, 2009, 325, 1510. https://doi.org/10.1126/science.1176695
- M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett., 2004, vol.93, no.23, 233602. https://doi.org/10.1103/PhysRevLett.93.233602
- R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, A. Kuzmich. Long-lived quantum memory, Nature Physics, 2009, 5, 100. https://doi.org/10.1038/nphys1152
- B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan. A millisecond quantum memory for scalable quantum networks, Nature Physics, 2009, 5, 95. https://doi.org/10.1038/nphys1153
- M. Parniak, M. Dąbrowski, M. Mazelanik, A. Leszczyński, M. Lipka, W. Wasilewski. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection». Nature communications, 2017, vol. 8, no. 1, p. 2140. https://doi.org/10.1038/s41467–017–02366–7
- S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, J.-W. Pan. Deterministic and Storable Single-Photon Source Based on a Quantum Memory. Phys. Rev. Lett. 2006, vol. 97, no. 17, p. 173004. https://doi.org/10.1103/PhysRevLett.97.173004
- N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, vol. 83, no. 1, pp. 33–80. https://doi.org/10.1103/RevModPhys.83.33
- M. Razavi, J. Amirloo, A. H. Majedi. Quantum Key Distribution over Atomic-Ensemble Quantum Repeaters. In: Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optica Publishing Group, 2010), paper OWC2. https://doi.org/10.1364/OFC.2010.OWC2
- T. Li, F. G. Deng. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Scientific Reports, 2015, 5, 15610. https://doi.org/10.1038/srep15610
- M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel Superradiance of quantum dots. Nature Physics, 2007, 3 (2), 106–110. https://doi.org/10.1038/nphys494
- Ахмеджанов Р. А., Гущин Л. А., Зеленский И. В., Митрофанова Т. Г., Низов В. А., Низов Н. А., Собгайда Д. А. Исследование когерентного пленения населенности и динамического эффекта Штарка в ансамблях NV-центров в алмазе при комнатной температуре в микроволновом диапазоне, Оптика и спектроскопия. 2023. Т. 131. № 1. С. 65–71. http://dx.doi.org/10.21883/OS.2023.01.54539.4211-22 Akhmedzhanov R. A., Gushchin L. A., Zelensky I. V., Mitrofanova T. G., Nizov V. A., Nizov N. A., Sobgaida D. A. Study of coherent population trapping and AC Stark effect in ensembles of NV-centers in diamond at room temperature in microwave range. Optics and Spectroscopy. 2023. Т. 131. № 1. С. 62. http://dx.doi.org/10.21883/EOS.2023.01.55518.4211-22
- P. Huillery, J. Leibold, T. Delord, L. Nicolas, J. Achard, A. Tallaire, G. Hétet. Coherent Microwave Control of a Nuclear Spin Ensemble at Room Temperature, Phys. Rev. B, 2021, 103, L140102. https://doi.org/10.1103/PhysRevB.103.L140102
- K. Huang, K. K. Green, L. Huang, H. Hallen, G. Han, S. F. Lim. Room-temperature upconverted superfluorescence». Nature Photonics, 2002, 16, pp. 737–742. https://doi.org/10.1038/s41566-022-01060-5
- W. Guerin Super- and subradiance in dilute disordered cold atomic samples: observations and interpretations», Advances In Atomic, Molecular, and Optical Physics, 2023, vol. 72, pp. 253–296. https://doi.org/10.1016/bs.aamop.2023.04.002
- R. Pennetta, M. Blaha, A. Johnson, D. Lechner, P. Schneeweiss, J. Volz, A. Rauschenbeutel. Collective Radiative Dynamics of an Ensemble of Cold Atoms Coupled to an Optical Waveguide, Phys. Rev. Lett., 2022, 128, 073601. https://doi.org/10.1103/PhysRevLett.128.073601
- M. B. Gaither-Ganim, S. A. Newlon, M. G. Anderson, B. Lee. Organic molecule single-photon sources, Oxford Open Materials Science, 2023, vol. 3, issue 1, itac017. https://doi.org/10.1093/oxfmat/itac017
- C. Brunel, B. Lounis, P. Tamarat, M. Orrit. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett., 1999, 83, 2722. http://dx.doi.org/10.1103/PhysRevLett.83.2722
- S. Kitson, P. Jonsson, J. Rarity, P. Tapster. Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity». Phys. Rev. A, 1998, 58, 620. http://dx.doi.org/10.1103/PhysRevA.58.620
- M. Steiner, A. Hartschuh, R. Korlacki, A. J. Meixner. Highly efficient, tunable single photon source based on single molecules. Appl. Phys. Lett., 2007, 90, 183122. http://dx.doi.org/10.1063/1.2736294
- A. Kiraz, M. Ehrl, T. Hellerer, O. E. Mustecaplioglu, C. Brauchle, A. Zumbusch. Indistinguishable Photons from a Single Molecule. Phys. Rev. Lett., 2005, 94, 223602. http://dx.doi.org/10.1103/PhysRevLett.94.223602
- B. Lounis, W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407, 491. http://dx.doi.org/10.1038/35035032
- L. Fleury, J. Segura, G. Zumofen, B. Hecht, U. Wild, Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature. Phys. Rev. Lett., 2000, 84, 1148. http://dx.doi.org/10.1103/PhysRevLett.84.1148
- M. Nothaft, S. Höhla, F. Jelezko, N. Frühauf, J. Pflaum, J. Wrachtrup. Electrically driven photon antibunching from a single molecule at room temperature». Nature Communications, 2012, 3, 628. https://doi.org/10.1038/ncomms1637
- V. I. Korepanov, D. M. Sedlovets. Recent Advances in 2D Polymeric Phthalocyanines: Synthesis, Characterization, Applications and New Challenges. Macroheterocycles, 2019, 12(3), 232–243. https://doi.org/10.6060/mhc190864s
- L. Zhang, Y.-J. Yu, L.-G. Chen, Y. Luo, B. Yang, F.-F. Kong, G. Chen, Y. Zhang, Q. Zhang, Y. Luo, J.-L. Yang, Z.-C. Dong, J. G. Hou. Electrically driven single-photon emission from an isolated single molecule. Nature Communications, 2017, vol. 8(1), 580. https://doi.org/10.1038/s41467-017-00681-7
- R. A. Escalante, M. C. Mathpal, C. Ruiz-Tagle, V. H. Alvarado, F. Pinto, L. J. Martínez, L. Gence, G. Garcia, I. A. González, J. R. Maze. Photophysics of a single quantum emitter based on vanadium phthalocyanine molecules. Optics Express, 2024, vol. 32, issue 17, pp. 29447–29457. https://doi.org/10.1364/OE.527703
- Y. Luo, G. Chen, Y. Zhang, L. Zhang, Y. Yu, F. Kong, X. Tian, Y. Zhang, C. Shan, Y. Luo, J. Yang, V. Sandoghdar, Z. Dong, J. G. Hou. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett., 2019, 122(23). https://doi.org/10.1103/physrevlett.122.233901
- Shuhui Bo, Jin Hu, Qi Wang, Xinhou Liua, Zhen Zhen. Near-infrared luminescence properties of erbium complexes with the substituted phthalocyaninato ligands. Photochemical & Photobiological Sciences, 2008, Vol. 7, pp. 474–479. https://doi.org/10.1039/b715809b
- I. A. Belogorokhov, L. I. Belogorokhova, Yu. V. Ryabchikov, V. E. Pushkarev. Luminescent Properties of Composite Systems Based on Polystyrene and Erbium(III) Phthalocyaninates in Near IR Spectral Region. Biomedical Chemistry: Research and Methods, 2018, vol. 1, no. 3, e00029. https://doi.org/10.18097/BMCRM00029
- G. L. Pakhomov. Luminescence of Phthalocyanine Thin Films, Physics of the Solid State, 2005, 47(1), 170. https://doi.org/10.1134/1.1853471
- A. Zavatta, S. Viciani, M. Bellini. Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A 2004, 70(5), 053821. https://doi.org/10.1103/PhysRevA.70.053821
- S. P. Walborn, C. H. Monken, S. Pádua, P. H. Souto Ribeiro. Spatial correlations in parametric down-conversion. Physics Reports 2010, 495(4–5), pp. 87–139. https://doi.org/10.1016/j.physrep.2010.06.003
- Г. Г. Левин, А. А. Самойленко, К. Н. Миньков, Д. Д. Ружицкая. Расчет параметров источника бифотонного излучения в широком диапазоне длин волн. Оптика и спектроскопия, 2018, т. 125, вып. 6. https://doi.org/10.21883/OS.2018.12.46942.32-18, G. G. Levin, A. A. Samoylenko, K. N. Min’kov, D. D. Ruzhitskaya. Calculating the Parameters of the Biphoton Radiation Source in a Wide Wavelength Range, Nonlinear optics, 2018, vol.125, pp. 997–1002. https://doi.org/10.1134/S0030400X18120123
- K. A. Forbes, J. S. Ford, D. L. Andrews. Nonlocalized Generation of Correlated Photon Pairs in Degenerate Down-Conversion. Phys. Rev. Lett., 2017, 118 (13), 133602. https://doi.org/10.1103/PhysRevLett.118.133602
- K. A. Forbes, J. S. Ford, G. A. Jones, D. L. Andrews. Quantum delocalization in photon-pair generation. Phys. Rev. A, 2017, 96 (2), 023850. https://doi.org/10.1103/PhysRevA.96.023850
- D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer. Periodically poled LiNbO3 for high-efficiency second-harmonic generation. Appl. Phys. Lett., 1991, 59(21), 2657–2659. https://doi.org/10.1063/1.105929
- B. Fan, Z. Duan, L. Zhou, C. Yuan, Z. Y. Ou, W. Zhang. Generation of a single-photon source via a four-wave mixing process in a cavity. Phys. Rev. A, 2009, 80(6): 063809. https://doi.org/10.1103/PhysRevA.80.063809
- J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, R. S. Windeler. Four-wave mixing in microstructure fiber. Optics Letters, 2001, 26(14), 1048–1050. https://doi.org/10.1364/OL.26.001048
- L. J. Wang, C. K. Hong, S. R. Friberg. Generation of correlated photons via four-wave mixing in optical fibres. Journal of Optics B: Quantum and Semiclassical Optics, 2001, 3(5), 346. https://doi.org/10.1088/1464-4266/3/5/F311
- R. E. Slusher, B. Yurke, P. Grangier, A. LaPorta, D. F. Walls, M. Reid. Squeezed-light generation by four-wave mixing near an atomic resonance. JOSA B., 1987, 4(10), 1453–1464. https://doi.org/10.1364/JOSAB.4.001453
- A. Dutt, K. Luke, S. Manipatruni, A. I. Gaeta, P. Nussenzveig, M. Lipson, On-Chip Optical Squeezing. Phys. Rev. Appl., 2015, 3(4), 044005. https://doi.org/10.1103/PhysRevApplied.3.044005
- H. Takesue, K. Inoue. Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev. A, 2004, 70 (3), 031802. https://doi.org/10.1103/PhysRevA.70.031802
Supplementary files
