Evaluation criterion of full-spectrum modules for solar power engineering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of highly efficient (efficiency > 40%) full-spectrum solar cells in the ground-based solar power engineering is associated with the sophisticated design of the solar power plant that can lead to the increased capital costs not covered by the boosted energy yield. It is proposed to use the relative LCOE (Levelised Cost of Energy) as a criterion for evaluating the competitiveness of a power plant with full-spectrum solar cells at its initial stage of development. It is shown that if the power plant is located at the geographic point with the coordinates (51N, 108E), the power plant competitiveness with full-spectrum solar cells shall be ensured already when the capital costs per 1 m2 of the module aperture exceed the capital costs per 1 m2 by no more than 1.9 times in comparison with a silicon module.

Full Text

Restricted Access

About the authors

Evgeniya A. Ionova

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: ionova@mail.ioffe.ru
ORCID iD: 0000-0003-2886-6706

research assosiate, Laboratory of Photovoltaic Converters

Russian Federation, Saint-Petersburg

Kirill A. Ovchinnikov

Peter the Great St. Petersburg Polytechnic University

Email: owe4kink@yandex.ru
ORCID iD: 0009-0006-5774-0925

Master’s student

Russian Federation, Saint-Petersburg

Dmitry A. Malevskiy

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: dmalevsky@scell.ioffe.ru
ORCID iD: 0000-0002-9337-4137

research assistant, Photovoltaics Laboratory

Russian Federation, Saint-Petersburg

References

  1. Popel’ O. S.,Tarasenko A.B. Modern Development Trends in Photovoltaics (Review). Thermal Engineering. 2021;11(5): 5–25. doi: 10.1134/S0040363621100039. Попель О. С., Тарасенко А. Б. Современные тенденции развития фотоэлектрической энергетики (обзор). Теплоэнергетика. 2021;11(5): 5–25. doi: 10.1134/S0040363621100039.
  2. Lyubimova N. G. The definition of “distributed energy”. Vestnik universiteta. 2014; 5: 103–105. eLIBRARY ID: 21596142. ISSN 2686-8415. Любимова Н. Г. Определение понятия «Распределенная энергетика». Вестник университета. 2014; 5: 103–105. eLIBRARY ID: 21596142. ISSN 2686-8415.
  3. http://www.azurspace.com/index.php/en/products/products-cpv/cpv-solar-cells.
  4. Green M. A., Dunlop E. D., Siefer G. et al. Solar cell efficiency tables (version 57). Progress in Photovoltaics Research and Applications. 2023;31:3–16. doi: 10.1002/pip.3646.
  5. Schroth P., Löckenhoff R., Fuhrmann D. et al. AZUR’s new 5C46 CPV cell: Final design for optimized outdoor performance. AIP Conference Proceedings. 2022; 2550:020008. doi: 10.1063/5.0100397.
  6. Geisz J. F., France R. M., Schulte K. L., Steiner M. A., Norman A. G., Guthrey H. L., Young M. R., Song T., Moriarty T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy. 2020;5:326–335. doi: 10.1038/s41560-020-0598-5.
  7. Andreev V. M., Davidyuk N. Y., Malevski D. A., Pan’chak A.N., Rumyantsev V. D., Sadchikov N. A., Chekalin A. V., Luque A. New-Generation Concentrator Modules Based on Cascade Solar Cells: Design and Optical and Thermal Properties. Tech. Phys. 2014;59(11):1650–1657. doi: 10.1134/S1063784214110024. Андреев В. М., Давидюк Н. Ю., Малевский Д. А., Паньчак А. Н., Румянцев В. Д., Садчиков Н. А., Чекалин А. В. Концентраторные модули нового поколения на основе каскадных солнечных элементов: конструкция, оптические и температурные свойства, ЖТФ. 2014;84(11):72–79.
  8. RU Patent 2476957. Solar photo energy apparatus/ Andreev V. M., Rumyantsev V. D., Pokrovsky P. V., Malevsky D. A., Kognovitsky S. O., Gushchina A. A. RU Патент № 2476957. Солнечная фотоэнергоустановка / Андреев В. М., Румянцев В. Д., Покровский П. В., Малевский Д. А., Когновицкий С. О., Гущина А. А.
  9. Ionova E. Power generation of multi-junction solar cells, taking into account the latitudinal variability of the spectral composition of radiation. Photonics Russia. 2023;17(7): 516–524. doi: 10.22184/1993-7296.FRos.2023.17.7.516.524. Ионова Е. А. Энерговыработка многопереходных солнечных элементов с учетом широтной изменчивости спектрального состава излучения. Фотоника. 2023;17(7): 516–524. doi: 10.22184/1993-7296.FRos.2023.17.7.516.524.
  10. Barinova V. A., Demidova K. V. Economic Feasibility of Solar Energy in Russia. Russian Economic Development. 2023; 30(10):18–31. Баринова В. А., Демидова К. В. Экономическая целесообразность развития солнечной энергетики в России. Экономическое развитие России. 2023; 30(10):18–31.
  11. Photovoltaic geographical information system. URL: https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.3.
  12. Steiner M., Bösch А., Dilger А., Dimroth F., et al., Steiner M. et al. FLATCON® CPV module with 36.7% efficiency equipped with four junction solar cells. Progress in Photovoltaics Research and Applications. 2015; 23(10): 1323–1329. doi: 10.1002/pip.2568.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A prototype solar power plant with eight FSMs and an installed capacity of 1–2 kW. Concentration of solar radiation is provided by a Fresnel lens panel, and the two-axis Sun tracking process is provided by a tracking support [7, 8].

Download (272KB)

Copyright (c) 2025 Ionova E.A., Ovchinnikov K.A., Malevskiy D.A.