Multi-material 3D printing: the role of substrate-based synthesis
- Authors: Repnin A.V.1, Borisov E.V.1, Popovich A.A.1
-
Affiliations:
- Peter the Great Saint-Petersburg Polytechnic University
- Issue: Vol 19, No 6 (2025)
- Pages: 428-442
- Section: Additive Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/694200
- DOI: https://doi.org/10.22184/1993-7296.FRos.2025.19.6.428.442
- ID: 694200
Cite item
Abstract
Multimaterial 3D printing by the substrate-based synthesis (SBS) method is a promising approach to obtain the products with the locally variable properties. However, the processing limits associated with various differences in the physicochemical properties of the materials being combined and the lack of a systematic classification hinder the development of this area. A new classification of multi-materials for SBS has been developed that includes three groups: homogeneous alloys (based on a single metal), dissimilar weldable alloys, and dissimilar non-weldable alloys. The features of transition zones for seven systems (VT6/VT1-0, AlSi10Mg/Al-Si-Mg-Cu, 316L/FeNi36, VZh159/BrKhTsrT V, Ti6Al4V/Inconel 718, 316L/NiTi) have been studied. It has been established that the number of defects, microstructure, and phase composition of the transition zone are determined by the type of alloy combination. The developed classification allows us to systematize the research works, optimize printing parameters, including of the laser tools, and predict any possible problems occurred when developing new multi-material systems.
Full Text
About the authors
Arseniy V. Repnin
Peter the Great Saint-Petersburg Polytechnic University
Author for correspondence.
Email: repnin_arseniy@mail.ru
ORCID iD: 0009-0001-3157-3317
Cand.of Sc. (Tech.), engineer of the laboratory “Synthesis of new materials and structures”
Russian Federation, Saint-PetersburgEvgeny V. Borisov
Peter the Great Saint-Petersburg Polytechnic University
Email: evgenii.borisov@icloud.com
ORCID iD: 0000-0003-2464-6706
Cand.of Sc. (Tech.), leading research fellow of the laboratory “Synthesis of new materials and structures”
Russian Federation, Saint-PetersburgAnatoly A. Popovich
Peter the Great Saint-Petersburg Polytechnic University
Email: director@immet.spbstu.ru
ORCID iD: 0000-0002-5974-6654
Dr.of Sc. (Tech.), professor, director of the Institute of Mechanical Engineering, Materials and Transport
Russian Federation, Saint-PetersburgReferences
- Wagner A., Rogers H., Le A. Exploring New Frontiers in Multi-Material Additive Manufacturing. IEEE Eng Manag Rev. 2024;53(2):122–133. doi: 10.1109/EMR.2024.3412403
- Nazir A., Gokcekaya O., Md Masum Billah K., Ertugrul O., Jiang J., Sun J., Hussain S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater. Des. 2023;226:111661. doi: 10.1016/J.MATDES.2023.111661
- Hasanov S., Alkunte S., Rajeshirke M., Gupta A., Huseynov O., Fidan I., Alifui-Segbaya F., Rennie A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J.Manuf Mater Process. 2021;6(1):4. doi: 10.3390/JMMP6010004
- Sherpa B.B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloy Metall Syst. 2024;6:100078. doi: 10.1016/J.JALMES.2024.100078
- Wang D., Sun X., Jiang Y., Chang X., Yonglei X. Review on the application of stainless-clad bimetallic steel in the marine environment. Anti-Corrosion Methods Mater. 2024;71(2):132–142. doi: 10.1108/ACMM-06-2023-2832
- Li G., Jiang W., Guan F., Zhang Z., Wang J., Yu Y., Fan Z. Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review. J. Magnes Alloy. 2023;11(9):3059–3098. doi: 10.1016/J.JMA.2023.09.001
- Kavousi Sisi A., Ozherelkov D., Chernyshikhin S., Pelevin I., Kharitonova N., Gromov A. Functionally graded multi-materials by laser powder bed fusion: a review on experimental studies. Prog Addit Manuf. 2024;10:1843–1912. doi: 10.1007/s40964-024-00739-1
- Nandhakumar R., Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater Today Commun. 2023;35:105538. doi: 10.1016/J.MTCOMM.2023.105538
- Gunasekaran J, Sevvel P, Solomon IJ. Metallic materials fabrication by selective laser melting: A review. Mater Today Proc. 2021;37(2):252–256. doi: 10.1016/J.MATPR.2020.05.162
- Verma A., Kapil A., Klobčar D., Sharma A. A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Mater. 2023;16(15):5246. doi: 10.3390/MA16155246
- Wei C., Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virt. and Phys. Prot. 2021;16(3):347–371. doi: 10.1080/17452759.2021.1928520
- Kolluri A. P. Multi-material additive manufacturing and future scope and expected progress. Multi-material Addit Manuf. Published online January 1, 2025:373–402. doi: 10.1016/B978-0-443-29228-6.00016-5
- Rafiee M., Farahani R. D., Therriault D. Multi-Material 3D and 4D Printing: A Survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/ADVS.201902307
- Borisov E., Polozov I., Starikov K., Popovich A., Sufiiarov V. Structure and properties of Ti/Ti64 graded material manufactured by laser powder bed fusion. Materials. 2021;14(20):6140. doi: 10.3390/MA14206140
- Fan H., Wang C., Tian Y., Zhou K., Yang S. Laser powder bed fusion (L-PBF) of Ti-6Al-4V/Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V/γ-TiAl bimetals: Processability, interface and mechanical properties. Mater. Sc. Eng. A. 2023;871:144907. doi: 10.1016/J.MSEA.2023.144907
- Sing S.L., Lam L. P., Zhang D. Q., Liu Z. H., Chua C. K. Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Mater Charact. 2015;107:220–227. doi: 10.1016/J.MATCHAR.2015.07.007
- Marques A., Cunha Â., Gasik M., Carvalho O., Silva F. S., Bartolomeu F. Inconel 718-copper parts fabricated by 3D multi-material laser powder bed fusion: a novel technological and designing approach for rocket engine. Int J. Adv Manuf Technol. 2022;122(3–4):2113–2123. doi: 10.1007/s00170-022-10011-x
- Meyer I., Oel M., Ehlers T., Lachmayer R. Additive manufacturing of multi-material parts – Design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Heliyon. 2023;9(8): e18301. doi: 10.1016/j.heliyon.2023.e18301
- Hengsbach F., Koppa P., Holzweissig M. J., Aydinöz M. E., Taube A., Hoyer K. P., Starykov O., Tonn B., Niendorf T., Tröster T., Schaper M. Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers. Prog Addit Manuf. 2018;3(4):221–231. doi: 10.1007/S40964-018-0044-4
- Sefene E. M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf Syst. 2022;63:250–274. doi: 10.1016/J.JMSY.2022.04.002
- Repnin A. V., Borisov E. V., Popovich A. A., Shamshurin A. I. Production of the VZh159-BrKhTsrT Multi-Material Using Selective Laser Melting Method. Russ J Non-Ferrous Met. 2024;65(2):122–131. doi: 10.1134/S1067821224600947
- Repnin A., Borisov E., Emelianov A. Popovich A. Fracture Toughness of Ti6Al4V/Cp-Ti Multi-Material Produced via Selective Laser Melting. Met. 2023;13(10):1738. doi: 10.3390/MET13101738
- Repnin A., Kim A., Popovich A. Interfacial Characterization of Selective Laser Melting of a SS316L/NiTi Multi-Material with a High-Entropy Alloy Interlayer. Cryst. 2023;13(10):1486. doi: 10.3390/CRYST13101486
- Repnin A., Borisov E., Maksimov A., Rozhkova D., Popovich A. Investigation of the 4D Multi-Material 316L/FeNi36 Obtained by Selective Laser Melting. Micromachines. 2024;15(11):1288. doi: 10.3390/MI15111288/S1
- Repnin A., Borisov E., Popovich A. Formation of the Cu+Nb Interlayer in the Inconel 718/Ti6Al4V Multi-Material Obtained by Selective Laser Melting. Mater. 2024;17(23):5801. doi: 10.3390/MA17235801
Supplementary files








