Multi-material 3D printing: the role of substrate-based synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Multimaterial 3D printing by the substrate-based synthesis (SBS) method is a promising approach to obtain the products with the locally variable properties. However, the processing limits associated with various differences in the physicochemical properties of the materials being combined and the lack of a systematic classification hinder the development of this area. A new classification of multi-materials for SBS has been developed that includes three groups: homogeneous alloys (based on a single metal), dissimilar weldable alloys, and dissimilar non-weldable alloys. The features of transition zones for seven systems (VT6/VT1-0, AlSi10Mg/Al-Si-Mg-Cu, 316L/FeNi36, VZh159/BrKhTsrT V, Ti6Al4V/Inconel 718, 316L/NiTi) have been studied. It has been established that the number of defects, microstructure, and phase composition of the transition zone are determined by the type of alloy combination. The developed classification allows us to systematize the research works, optimize printing parameters, including of the laser tools, and predict any possible problems occurred when developing new multi-material systems.

Full Text

Restricted Access

About the authors

Arseniy V. Repnin

Peter the Great Saint-Petersburg Polytechnic University

Author for correspondence.
Email: repnin_arseniy@mail.ru
ORCID iD: 0009-0001-3157-3317

Cand.of Sc. (Tech.), engineer of the laboratory “Synthesis of new materials and structures”

Russian Federation, Saint-Petersburg

Evgeny V. Borisov

Peter the Great Saint-Petersburg Polytechnic University

Email: evgenii.borisov@icloud.com
ORCID iD: 0000-0003-2464-6706

Cand.of Sc. (Tech.), leading research fellow of the laboratory “Synthesis of new materials and structures”

Russian Federation, Saint-Petersburg

Anatoly A. Popovich

Peter the Great Saint-Petersburg Polytechnic University

Email: director@immet.spbstu.ru
ORCID iD: 0000-0002-5974-6654

Dr.of Sc. (Tech.), professor, director of the Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

References

  1. Wagner A., Rogers H., Le A. Exploring New Frontiers in Multi-Material Additive Manufacturing. IEEE Eng Manag Rev. 2024;53(2):122–133. doi: 10.1109/EMR.2024.3412403
  2. Nazir A., Gokcekaya O., Md Masum Billah K., Ertugrul O., Jiang J., Sun J., Hussain S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater. Des. 2023;226:111661. doi: 10.1016/J.MATDES.2023.111661
  3. Hasanov S., Alkunte S., Rajeshirke M., Gupta A., Huseynov O., Fidan I., Alifui-Segbaya F., Rennie A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J.Manuf Mater Process. 2021;6(1):4. doi: 10.3390/JMMP6010004
  4. Sherpa B.B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloy Metall Syst. 2024;6:100078. doi: 10.1016/J.JALMES.2024.100078
  5. Wang D., Sun X., Jiang Y., Chang X., Yonglei X. Review on the application of stainless-clad bimetallic steel in the marine environment. Anti-Corrosion Methods Mater. 2024;71(2):132–142. doi: 10.1108/ACMM-06-2023-2832
  6. Li G., Jiang W., Guan F., Zhang Z., Wang J., Yu Y., Fan Z. Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review. J. Magnes Alloy. 2023;11(9):3059–3098. doi: 10.1016/J.JMA.2023.09.001
  7. Kavousi Sisi A., Ozherelkov D., Chernyshikhin S., Pelevin I., Kharitonova N., Gromov A. Functionally graded multi-materials by laser powder bed fusion: a review on experimental studies. Prog Addit Manuf. 2024;10:1843–1912. doi: 10.1007/s40964-024-00739-1
  8. Nandhakumar R., Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater Today Commun. 2023;35:105538. doi: 10.1016/J.MTCOMM.2023.105538
  9. Gunasekaran J, Sevvel P, Solomon IJ. Metallic materials fabrication by selective laser melting: A review. Mater Today Proc. 2021;37(2):252–256. doi: 10.1016/J.MATPR.2020.05.162
  10. Verma A., Kapil A., Klobčar D., Sharma A. A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Mater. 2023;16(15):5246. doi: 10.3390/MA16155246
  11. Wei C., Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virt. and Phys. Prot. 2021;16(3):347–371. doi: 10.1080/17452759.2021.1928520
  12. Kolluri A. P. Multi-material additive manufacturing and future scope and expected progress. Multi-material Addit Manuf. Published online January 1, 2025:373–402. doi: 10.1016/B978-0-443-29228-6.00016-5
  13. Rafiee M., Farahani R. D., Therriault D. Multi-Material 3D and 4D Printing: A Survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/ADVS.201902307
  14. Borisov E., Polozov I., Starikov K., Popovich A., Sufiiarov V. Structure and properties of Ti/Ti64 graded material manufactured by laser powder bed fusion. Materials. 2021;14(20):6140. doi: 10.3390/MA14206140
  15. Fan H., Wang C., Tian Y., Zhou K., Yang S. Laser powder bed fusion (L-PBF) of Ti-6Al-4V/Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V/γ-TiAl bimetals: Processability, interface and mechanical properties. Mater. Sc. Eng. A. 2023;871:144907. doi: 10.1016/J.MSEA.2023.144907
  16. Sing S.L., Lam L. P., Zhang D. Q., Liu Z. H., Chua C. K. Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Mater Charact. 2015;107:220–227. doi: 10.1016/J.MATCHAR.2015.07.007
  17. Marques A., Cunha Â., Gasik M., Carvalho O., Silva F. S., Bartolomeu F. Inconel 718-copper parts fabricated by 3D multi-material laser powder bed fusion: a novel technological and designing approach for rocket engine. Int J. Adv Manuf Technol. 2022;122(3–4):2113–2123. doi: 10.1007/s00170-022-10011-x
  18. Meyer I., Oel M., Ehlers T., Lachmayer R. Additive manufacturing of multi-material parts – Design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Heliyon. 2023;9(8): e18301. doi: 10.1016/j.heliyon.2023.e18301
  19. Hengsbach F., Koppa P., Holzweissig M. J., Aydinöz M. E., Taube A., Hoyer K. P., Starykov O., Tonn B., Niendorf T., Tröster T., Schaper M. Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers. Prog Addit Manuf. 2018;3(4):221–231. doi: 10.1007/S40964-018-0044-4
  20. Sefene E. M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf Syst. 2022;63:250–274. doi: 10.1016/J.JMSY.2022.04.002
  21. Repnin A. V., Borisov E. V., Popovich A. A., Shamshurin A. I. Production of the VZh159-BrKhTsrT Multi-Material Using Selective Laser Melting Method. Russ J Non-Ferrous Met. 2024;65(2):122–131. doi: 10.1134/S1067821224600947
  22. Repnin A., Borisov E., Emelianov A. Popovich A. Fracture Toughness of Ti6Al4V/Cp-Ti Multi-Material Produced via Selective Laser Melting. Met. 2023;13(10):1738. doi: 10.3390/MET13101738
  23. Repnin A., Kim A., Popovich A. Interfacial Characterization of Selective Laser Melting of a SS316L/NiTi Multi-Material with a High-Entropy Alloy Interlayer. Cryst. 2023;13(10):1486. doi: 10.3390/CRYST13101486
  24. Repnin A., Borisov E., Maksimov A., Rozhkova D., Popovich A. Investigation of the 4D Multi-Material 316L/FeNi36 Obtained by Selective Laser Melting. Micromachines. 2024;15(11):1288. doi: 10.3390/MI15111288/S1
  25. Repnin A., Borisov E., Popovich A. Formation of the Cu+Nb Interlayer in the Inconel 718/Ti6Al4V Multi-Material Obtained by Selective Laser Melting. Mater. 2024;17(23):5801. doi: 10.3390/MA17235801

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Examples of multi-material products obtained by the SBS method: a) multi-material combustion chamber for a liquid rocket engine, b) multi-material gear

Download (386KB)
3. Fig. 2. Porosity occurrence in the transition zone of multi-materials [21]: a) porosity formation in the case of excess energy, b) porosity formation in the case of insufficient energy

Download (111KB)
4. Fig. 3. Crack formation in the transition zone of multi-materials [25]: a) crack formation due to the availability of embrittling intermetallides, b) absence of cracks due to the use of a transition layer

Download (252KB)
5. Fig. 4. Change in the transition zone width [21, 25]: a) sharp transition from one alloy to another, b–c) gradient transition from one alloy to another

Download (345KB)
6. Fig. 5. Inefficient use of transition layers to reduce the defects (316L/NiTi multi-material with a transition layer made of high-density oxide – CoCrFeNiMn) [23]

Download (412KB)
7. Fig. 6. Classification of multi-material additive manufacturing for the SBS process

Download (176KB)

Copyright (c) 2025 Repnin A.V., Borisov E.V., Popovich A.A.