Densification of super-refractory carbide ceramics by laser remelting for laser-induced mass spectrometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper provides a modification method for the surface layer of mixed tantalum–hafnium carbide samples to obtain the samples with extremely high density required for reliable implementation of the experiments related to the mass spectrometry of vapor generated during the laser-induced evaporation. Such samples were obtained by remelting the surface layer of tantalum–hafnium carbide ceramics using a series of subsecond laser pulses. Analysis of the obtained remelted areas has shown that the crystallized melt area is single-phase mixed carbide, namely a solid solution of the HfC – TaC system that is characterized by a highly uniform distribution of tantalum and hafnium throughout the remelted area. The time-of-flight mass spectrometry was used to study the evolution of vapor components during the laser-induced evaporation process of pre-melted carbide that demonstrated a good correlation with the surface temperature in contrast to the experiments with the sintered ceramics.

Full Text

Restricted Access

About the authors

Aleksander M. Frolov

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: m.froloff@yandex.ru
ORCID iD: 0000-0002-3091-9451

Cand.of Sc. (Phys.&Math.), Senior Researcher, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Pavel S. Vervikishko

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: miptbusiness@gmail.com
ORCID iD: 0000-0002-4527-6524

Senior Researcher, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Tatiana V. Bgasheva

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: 1.8.1@list.ru
ORCID iD: 0000-0002-5258-0153

Research Fellow, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Sergei V. Petukhov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: petuhov.sergey@bk.ru
ORCID iD: 0000-0003-3852-1314

leading engineer, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Alexander S. Bulava

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: bulava.as@phystech.edu
ORCID iD: 0009-0005-4804-7056

research fellow, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Mikhaik V. Brykin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: mbrykin@gmail.com
ORCID iD: 0000-0002-8046-888X

senior researcher, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

Mikhail A. Sheindlin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: sheindlin@yandex.ru
ORCID iD: 0000-0002-4960-7757

Dr. of Sc.(Phys.&Math.), Head of laboratory, Laboratory of Extreme Energy Impacts

Russian Federation, Moscow

References

  1. Frolov A., Bulava A., Petukhov S., Tarasova M., Sheindlin M. Mass spectrometric study of the laser-evaporated TaC–ZrC mixed carbide up to 4550 K. J. Am. Ceram. Soc. 2025. doi: 10.1111/jace.20597.
  2. Peters A.B., Zhang D., Chen S., Ott C., Oses C., Curtarolo S., McCue I., Pollock T. M., Eswarappa Prameela S. Materials design for hypersonics. Nat. Commun. 2024.15; 3328. doi: 10.1038/s41467-024-46753-3.
  3. Savvatimskiy A.I., Onufriev S. V., Sedegov A. S., Yudin S. N., Moskovskikh D. O. Thermophysical Properties of High-entropy Carbide (HfTaTiNbZr)C at Temperatures of 2500–5500 K, High Temp. 60 (2022) 612–615. doi: 10.1134/S0018151X2205011X.
  4. Sheindlin M. A., Brykin M. V., Bgasheva T. V., Vasin A. A., Vervikishko P. S., Petukhov S. V., Frolov A. M. Ultra-High Temperature Carbides Under Irradiation of the Power Industrial Lasers. Photonics Russia. 2022;16: 142–154. doi: 10.22184/1993-7296.FRos.2022.16.2.142.154. Шейндлин M. A., Брыкин М. В., Бгашева Т. В., Васин А. А., Вервикишко П. С., Петухов С. В., Фролов А. М. Сверхтугоплавкие карбиды при воздействии излучения мощного технологического лазера. ФОТОНИКА. 2022;16: 142–154. doi: 10.22184/1993-7296.FRos.2022.16.2.142.154.
  5. Perevislov S.N., Arlashkin I. E., Stolyarova V. L. Synthesis and sintering of MAX phases in the Zr–Al–C system. J. Am. Ceram. Soc. 2024;107: 488–500. https://doi.org/10.1111/jace.19419.
  6. Wang Y., Zhang B., Zhang C., Yin J., Reece M. J. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C. J. Mater. Sci. Technol. 2022;113: 40–47. doi: 10.1016/j.jmst.2021.09.064.
  7. Savvatimskiy A.I., Onufriev S. V., Valyano G. E., Muboyadzhyan S. A. Thermophysical properties for hafnium carbide (HfC) versus temperature from 2000 to 5000 K (experiment). J. Mater. Sci. 2020;55: 13559–13568. doi: 10.1007/s10853-020-04959-y.
  8. Savvatimskiy A.I., Onufriev S. V., Aristova N. M. Physical properties of refractory carbides of metals of groups IV and V of the Mendeleev periodic table during rapid heating by an electric current pulse. Physics-Uspekhi. 2022;65: 597–616. doi: 10.3367/UFNe.2021.06.038990.
  9. Biesuz M., Saunders T. G., Veverka J., Bortolotti M., Vontorová J., Vilémová M., Reece M. J. Solidification microstructures of multielement carbides in the high entropy Zr-Nb-Hf-Ta-Cx system produced by arc melting. Scr. Mater. 2021; 203: 114091. doi: 10.1016/j.scriptamat.2021.114091.
  10. Shkodich N., Sedegov A., Kuskov K., Busurin S,. Scheck Y., Vadchenko S., Moskovskikh D. Refractory High-Entropy HfTaTiNbZr-Based Alloys by Combined Use of Ball Milling and Spark Plasma Sintering: Effect of Milling Intensity. Metals (Basel). 2020;10: 1268. doi: 10.3390/met10091268.
  11. Frolov A.M., Shejndlin M. A., Vasin A. A. Eksperimental’noe issledovanie sostava para pri lazerno-inducirovannoj sublimacii melkokristallicheskogo grafita do 4200 K. Vestnik Ob’edinennogo instituta vysokih temperatur. 2019;2: 44–47. Фролов А. М., Шейндлин М. А., Васин А. А. Экспериментальное исследование состава пара при лазерно-индуцированной сублимации мелкокристаллического графита до 4200 К. Вестник Объединенного института высоких температур. 2019;2: 44–47.
  12. Pak A.Y., Sotskov V., Gumovskaya A. A., Vassilyeva Y. Z., Bolatova Z. S., Kvashnina Y. A., Mamontov G. Y., Shapeev A. V., Kvashnin A. G. Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide. Npj Comput. Mater. 2023; 9: 7. doi: 10.1038/s41524-022-00955-9.
  13. Sheindlin M.A., Falyakhov T., Petukhov S., Valyano G., Vasin A. Recent advances in the study of high-temperature behaviour of non-stoichiometric TaCx, HfCx and ZrCx carbides in the domain of their congruent melting point. Adv. Appl. Ceram. 2018;117: s48-s55. doi: 10.1080/17436753.2018.1510819.
  14. Frolov A., Sheindlin M. Mass spectrometric study of the laser-produced carbon vapor up to 4500 K. Carbon N. Y. 2022. doi: 10.1016/j.carbon.2022.03.078.
  15. Sheindlin M., Frolov A., Petukhov S., Bottomley D., Masaki K., Manara D., Costa D. Mass spectrometric study of the laser-evaporated Fe–Zr–O system up to 3300 K, J. Am. Ceram. Soc. 105 (2022) 2161–2170. doi: 10.1111/jace.18185.
  16. Drowart J., Chatillon C., Hastie J., Bonnell D. High-temperature mass spectrometry: Instrumental techniques, ionization cross-sections, pressure measurements, and thermodynamic data (IUPAC technical report). Pure Appl. Chem. 2005;77: 683–737. doi: 10.1351/pac200577040683.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the sample melting setup (source [4])

Download (182KB)
3. Fig. 2. Sample section (50 mol % HfC) through the melt region (SEM image): a) – magnification 76x; b) – magnification 189x

Download (723KB)
4. Fig. 3. XRD pattern of the remelted region of the 0.5TaC-0.5HfC carbide sample

Download (89KB)
5. Fig. 4. Dependence of laser power, temperature and intensity of the hafnium line in the mass spectra of vapor during evaporation of carbide 0.5HfC–0.5TaC

Download (194KB)
6. Fig. 5. Temperature dependence of the relative partial pressure of hafnium during the laser-induced evaporation of a pre-melted sample with 50 mol % HfC

Download (134KB)

Copyright (c) 2025 Frolov A.M., Vervikishko P.S., Bgasheva T.V., Petukhov S.V., Bulava A.S., Brykin M.V., Sheindlin M.A.