High-speed laser cladding of hydraulic cylinder rods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

During the study, the samples obtained by the high-speed laser cladding technology with the application of fiber lasers made by VPG Lazerone LLC were examined. This processing approach is a promising method for applying protective coatings to the metal surfaces. This article provides the coating results of 38Cr2MoAlA medium-carbon steel with the high-alloy iron-based powder materials. The resulting surface layer demonstrated the increased microhardness and wear resistance properties. The high process velocity minimized the sample heating that preserved the original geometric dimensions and minimized mixing of the deposited material with the base metal, while maintaining high adhesion between the coating and the base metal.

Full Text

Restricted Access

About the authors

Evgeny V. Khriptovich

VPG Laserone LLC

Author for correspondence.
Email: eHriptovich@VPGlaserone.ru
ORCID iD: 0000-0001-9935-1414

head of the laser cladding and heat treatment group

Russian Federation, Fryazino, Moscow region

Vladimir P. Biryukov

Institute of Machine Science of the RAS

Email: laser-52@yandex.ru
ORCID iD: 0000-0001-9278-6925

leading researcher, Ph.D. in technical sciences

Russian Federation, Moscow

Aleksander S. Zakharov

VPG Laserone LLC

Email: eHriptovich@VPGlaserone.ru
ORCID iD: 0009-0004-1581-8830

process engineer

Russian Federation, Fryazino, Moscow region

Vladimir S. Bashlaev

VPG Laserone LLC

Email: eHriptovich@VPGlaserone.ru
ORCID iD: 0009-0001-2517-6753

process engineer

Russian Federation, Fryazino, Moscow region

Daniil V. Myasnikov

VPG Laserone LLC

Email: dMyasnikov@vpglaserone.ru
ORCID iD: 0009-0008-2669-5484

deputy director general for advanced research and development

Russian Federation, Fryazino, Moscow region

Yaroslav A. Goryunov

Institute of Machine Science of the RAS

Email: eHriptovich@VPGlaserone.ru
ORCID iD: 0009-0002-1614-0174

junior researcher

Russian Federation, Moscow

References

  1. Wang K., Du D., Liu G., Pu Z., Chang B., Ju J. A study on the additive manufacturing of a high chromium Nickel-based superalloy by extreme high-speed laser metal deposition. Optics & Laser Technology. 2021;133:106504. https://doi.org/10.1016/j.optlastec.2020.106504.
  2. Ding Y., Du C., Wang X., Zhang B. Microstructure and interfacial metallurgical bonding of 1Cr17Ni2/carbon steel extreme high-speed laser cladding coating. Advanced Composites and Hybrid Materials. 2021; 4; 205–211. https://doi.org/10.1007/s42114-020-00194-w.
  3. Shen F., W. Tao, Li L., Zhou Y., Wang W., Wang S. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding. Applied Surface Science. 2020; 517; 146085. https://doi.org/10.1016/j.apsusc.2020.146085.
  4. Yuan W., Li R., Chen Z., Gu J., Tian Y. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surface and Coatings Technology. 2020; https://doi.org/10.1016/j.surfcoat.2020.126582.
  5. Jian Y., Liu Y., Qi H., He P., Huang G., Huang Z. Effects of scanning speed on the microstructure, hardness and corrosion properties of high-speed laser cladding Fe-based stainless coatings. Journal of Materials Research and Technology. 2024; 29; 3380–3392. https://doi.org/10.1016/j.jmrt.2024.02.087.
  6. Tuominen J., Kiviö J., Balusson C., Raami L., Vihinen J. Peura P. High-speed laser cladding of chromium carbide reinforced Ni-based coatings. Welding in the World. 2023; 67; 2175–2186. https://doi.org/10.1007/s40194-023-01557-9.
  7. Du C., Hu L., Ren X., Li c Y., Zhang F., Liu P., Li Y. Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surface & Coatings Technology. 2021; 424; 127617. https://doi.org/10.1016/j.surfcoat.2021.127617.
  8. Liu J., Li Y., Tan N., Hu Z., Zhou Y., Deng Q., Zhang G., Lu Z. Microstructure and properties of the solid solution ceramic coating by highspeed laser cladding. Optics & Laser Technology. 2023; 158;108792. https://doi.org/10.1016/j.optlastec.2022.108792.
  9. Yang Z., Jian Y., Chen Z., Qi H., Huang Z., Huang G., Xing J. Microstructure, hardness and slurry erosion-wear behaviors of high-speed laser cladding Stellite 6 coatings prepared by the inside-beam powder feeding method. Journal of materials research and technology. 2022; 19; 2596–2610. https://doi.org/10.1016/j.jmrt.2022.06.025.
  10. Kuksenova L. I., Lapteva V. G., Kolmakov A. G., Rybakova L. M. Metody ispytanij na trenie i iznos. – M.: Izd-vo Intermet Inzhiniring, 2001. 152 s. Куксенова, Л.И., Лаптева В. Г., Колмаков А. Г., Рыбакова Л. М. Методы испытаний на трение и износ. – М.: Изд-во Интермет Инжиниринг, 2001. 152 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Coaxial nozzle made by VPG Laserone LLC: a – appearance; b – flow of powder material with a focal length of 20 mm

Download (152KB)
3. Fig. 2. Standard samples for the shear strength testing of the base metal

Download (71KB)
4. Fig. 3. Sample for determining wear resistance of the coatings

Download (32KB)
5. Fig. 4. Sample after laser cladding and polished sections: a –appearance (Ø38 mm); b – high-speed cladding, c – typical cladding

Download (611KB)
6. Fig. 5. Graph of microhardness measurements of the applied coatings by depth and width of the cladding area: a) high-speed cladding; b) typical cladding

Download (188KB)

Copyright (c) 2025 Khriptovich E.V., Biryukov V.P., Zakharov A.S., Bashlaev V.S., Myasnikov D.V., Goryunov Y.A.