Operating point bias compensation method for the Mach-Zehnder modulator with thermistors circuit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Mach-Zehnder microwave modulators on bulk or thin film lithium niobate are key components in data transmission networks, including quantum communications. However, the problem of operating point drift is still significant. A lot of methods for DC bias compensation for different technical tasks have been demonstrated. In this paper, we propose analog electrical scheme for thermal DC bias compensation using a thermistor system. We demonstrate the tuning of the electrical scheme for the operating point bias from temperature, and then experimentally confirm the effectiveness of this method by obtaining the maximum deviation from the mean optical power no more than 1.0 dB or 1.0 V applied DC voltage at temperature up to 45 °C. The proposed approach does not require any additional power supply for adjustment and can be used for special tasks in remote locations.

Full Text

Restricted Access

About the authors

Arseny Y. Kireev

Perm Scientific Industrial Instrument-Making Company

Author for correspondence.
Email: Kireev@pnppk.ru
ORCID iD: 0009-0002-6792-7823

Research Engineer

Russian Federation, Perm

Anton A. Zhuravlev

Perm Scientific Industrial Instrument-Making Company

Email: aaz@pnppk.ru
ORCID iD: 0000-0003-2270-6314

Cand. of Sc. (Tech.), head of scientific-research institute of photonics and optoelectronics

Russian Federation, Perm

Aleksei V. Sosunov

Perm State University

Email: avsosunov@psu.ru
ORCID iD: 0000-0002-5760-1523

Cand. of Sc.(Tech.), Senior Researcher

Russian Federation, Perm

References

  1. Sinatkas G., Christopoulos T., Tsilipakos O., Kriezis E.E. Electro-optic modulation in integrated photonics. Journal of Applied Physics, 2021;130(1):010901, doi: 10.1063/5.0048712.
  2. Wooten E. L., Kissa K. M., Yi-Yan A., Murphy E. J., Lafaw D. A., Hallemeier P. F. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000;6(1):69–82, doi: 10.1109/2944.826874.
  3. Doughan I., Oyemakinwa K., Ovaskainen O., Roussey M. Strip-loaded Mach–Zehnder interferometer for absolute refractive index sensing, Scientific Reports, 2024;14(1):3064, doi: 10.1038/s41598-024-53326-3.
  4. Park Ch.H., Woo M. Ki., Park B. K., Jeon S. W., Jung H., Kim S. Experimental Demonstration of an Efficient Mach–Zehnder Modulator Bias Control for Quantum Key Distribution Systems. Electronics. 2022;11(14):2207, doi: 10.3390/electronics11142207.
  5. Assumpcao D., Renaud D., Baradari A., Desiatov B., Piracha A. H., Rugar A. E. A thin film lithium niobate near-infrared platform for multiplexing quantum nodes, Nature Communications, 2024;15(1):1–9, doi: 10.1038/s41467-024-54541-2.
  6. Petrov V. M., Agruzov P. M., Lebedev V. V., Il’ichev I.V., Shamray A. V. Broadband integrated optical modulators: achievements and prospects, Physics-Uspekhi, 2021;64(7):722–739. doi: 10.3367/UFNe.2020.11.038871] Петров В. М., Агрузов. П.М., Лебедев В. В., Ильичев И. В., Шамрай А. В. Широкополосные интегрально-оптические модуляторы: достижения и перспективы развития, УФН, 2021;191:760–780, doi: 10.3367/UFNr.2020.11.038871
  7. Meng X., Yuan C., Cheng X., Yuan S., Shang C., Pan A. Thin-Film Lithium Niobate Modulators with Ultra-High Modulation Efficiency, Laser Photonics Reviews. 2024;19(1):2400809, doi: 10.1002/lpor.202400809.
  8. Fu Y., Zhang X., Hraimel B., Liu T., Shen D. Mach-Zehnder: A Review of Bias Control Techniques for Mach-Zehnder Modulators in Photonic Analog Links, IEEE Microwave Magazine, 2013;14(7):102–107, doi: 10.1109/MMM.2013.2280332.
  9. Yuan X., Zhang H., Liu Y., Li X. Any point bias control technique for MZ modulator, Optik, 2019;178:918–922, doi: 10.1016/j.ijleo.2018.10.028.
  10. Salvestrini J. P., Guilbert L., Bourson P., Fontana M. D., Abarkan M. Analysis and Control of the DC Drift in LiNbO3-Based Mach–Zehnder Modulators, Journal of Lightwave Technology, 2011;29(10):1522–1534 doi: 10.1109/JLT.2011.2136322.
  11. Agruzov P., Parfenov M., Ilichev I., Varlamov A., Tronev A., Shamrai A. The Optimal Operating Point for Linearizing an Integrated Optical Lithium Niobate Directional Coupler Modulator, Photonics. 2024;11(1):48 doi: 10.3390/photonics11010048.
  12. Hara H., Joichi T., Abe S., Fujita M., Tazawa H., Fujimura T. Photo-induced DC drift in Mach-Zehnder modulators using lead lanthanumzirconate titanate thin films, AIP Advances, 2022;12(12):125115, doi: 10.1063/5.0129414.
  13. Sosunov A., Ponomarev R., Semenova O., Petukhov I., Volyntsev A. Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. Optical Materials, 2019;88:176–180, doi: 10.1016/j.optmat.2018.11.018.
  14. Sosunov A., Ponomarev R., Zhuravlev A., Mushinsky S., Kuneva M. Reduction in DC-drift in LiNbO3-based electro-optical modulators, Photonics, 2021;8(12):571, doi: 10.3390/photonics8120571
  15. Karagöz E., Aşık F.Ya., Gökkavas M., Akbaş E. E., Yertutanol A., Özbay E. Reduction in temperature-dependent fiber-optic gyroscope bias drift by using multifunctional integrated optical chip fabricated on pre-annealed LiNbO3. Photonics. 2024;11(11):1057. doi: 10.3390/photonics11111057.
  16. Shi J., Ye Z., Liu Z., Yan Z., Jia K., Zhang L. Alleviation of DC drift in a thin-film lithium niobate modulator utilizing Ar+ ion milling, Optics Letters, 2025;50(5):1703, doi: 10.1364/OL.549975
  17. Wang S., Wang H., Li C., Wang Y., Yuan S., Hu J. Improving thermal stability of LiNbO3 based electro-optical electric field sensor by depositing a TiO2 film, High Voltage, 2022;7(5):840–846, doi: 10.1049/hve2.12198.
  18. Hofer L. R., Schaeffer D. B., Constantin C. G., Niemann C. Bias Voltage Control in Pulsed Applications for Mach-Zehnder Electrooptic Intensity Modulators, IEEE Transactions on Control Systems Technology, 2016;25(5):1890–1895, doi: 10.1109/TCST.2016.2626276.
  19. Yang B., Liu Z., Yang S., Chi H. Stable bias control of Mach-Zehnder modulator for arbitrary optical pulse picking via reference pulse power monitoring, Optics Express, 2025;33(4):6689–6696, doi: 10.1364/oe.547029.
  20. Yang H., Li J., Man X., Yin Z., Wang Y., Hu P. Operating point control method for the Mach-Zehnder modulator in a phase-shift laser range finder, Optics Express, 2024;32(11):19881–19894, doi: 10.1364/OE.517773.
  21. Svarny J., Chladek S. Model-Based Bias Controller for a Mach-Zehnder Intensity Modulator, Journal of Lightwave Technology, 2022;40(3):720–727, doi: 10.1109/jlt.2021.3122460.
  22. Wang M., Li J., Yao H., Wang J., Zhang H., Chen Y. Thin-film lithium-niobate modulator with a combined passive bias and thermo-optic bias, Optics Express, 2022;30(22):39706–39715, doi: 10.1364/oe.474594.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MZ-modulator scheme

Download (115KB)
3. Fig. 2. Experimental scheme: 1 – laser 1550 nm Koheras BASIK X15 NKT Photonics, 2 – polarization control Stackable Three Paddle Type Polarization Controller KSPhotonics, 3 – driver of DC bias (thermistor circuit), 4 – power supply GW Instek GPP-72323, 5 – multimeter, 6 – optical power meter FOD-1204, 7 – MZ-modulator, 8 – climate chamber Espec MC-712R.

Download (107KB)
4. Fig. 3. Transfer function

Download (68KB)
5. Fig. 4. Experimental and theoretical results of maintaining the operating point at the quadrature point (a) and the electrical circuit of the thermistors, which was used for theoretical calculations and then in temperature tests (b).

Download (90KB)
6. Fig. 5. The output optical power bias of the MZ-modulator (a) and linear increase in voltage to stabilize the operating point with temperature (b)

Download (151KB)

Copyright (c) 2025 Kireev A.Y., Zhuravlev A.A., Sosunov A.V.