Mode of bacteria-commensales interaction with immunity in certain syndromes of chronic intestinal inflammation


Cite item

Full Text

Abstract

This review covers the molecular mechanisms that ensure the integrity of the intestinal epithelium and the nature of the interaction of normal microflora with immunity factors in some chronic inflammatory syndromes. We highlight the role of nitric oxide in the pathogenesis of inflammatory bowel disease, and the role of transcription factor NF-kB, involved in control of expression of genes coding for the synthesis of various antimicrobial products, anti-inflammatory and anti-inflammatory cytokines, and various enzymes and other. Data presented for the molecular genetic basis of pathogenesis of inflammatory diseases of digestive tract are very important to develop more effective methods of their therapy.

References

  1. Pickard KM, Brenner AN, Gordon JN, et al. Microbial-gut interactions in health and disease. Immune responses. Вest Pract Res Clin Gastrоenterol 2004;18(2):271-85.
  2. Rakoff-Nahoum S, Paglino J, Esmali-Varzaeh F, et al. Recognition of commensal microflora by toll-like receptors for intestinal homeostasis. Cell 2004;118(2):229-41.
  3. Ковальчук Л.В. Учение о воспалении в свете новых данных: развитие идей И.И. Мечникова // Микробиология. 2008. № 5. С. 10-5.
  4. Acheson DW, Luccioli S. Microbial-gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol 2004;18:387-404.
  5. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4:953-64.
  6. Рябиченко Е.В., Бондаренко В.М. Роль кишечной бактериальной аутофлоры и ее эндотоксина в патологии человека // Микробиология. 2007. № 3. С. 103-11.
  7. Бондаренко В.М. Роль условно-патогенных бактерий кишечника в полиорганной патологии человека. М. 2007.
  8. Ceponis PJ, Botelho F, Richards CD, et al. Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 2005;275:2913-17.
  9. Madsen KL, Lewis SA, Tavernini MM, et al. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997;113:151-59.
  10. Бондаренко В.М., Виноградов Н.А., Малеев В.В. Антимикробная активность окиси азота и ее роль в инфекционном процессе // Микробиология. 1999. № 5. С. 61-7.
  11. Chavez AM, Menconi MJ, Hodin RA, et al. Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Crit Care Med 1999;27:2246-51.
  12. Han X, Fink MP, Delude RL, et al. Proinflammatory cytokines cause NO-dependent and independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 2003;19:229-37.
  13. Broad A, Jones DE, Kirby JA. Toll-like receptor (TLR) response tolerance: a key physiological "damage limitation" effect and an important potential opportunity for therapy. Curr Med Chem 2006;13(21):2487-502.
  14. Philpott DJ, Girardin SE. The role of tall-like receptors and Nod proteins in bacterial infection. Mol Immunol 2004;41:1099-108.
  15. Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005;307:1920-25.
  16. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1(2):143-45.
  17. Mack DR, Ahrne S, Hude L, et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003;52:827-33.
  18. Clark JA, Coopersmith CM. Intestinal crosstalk - a new paradigm for understanding the gut as the "motor" of critical illness. Shock 2007;28(4):384-93.
  19. Hooper LV, Stappenbeck TS, Hong CV, et al. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4:269-73.
  20. Jobin C, Sartor RB. The IkB/NFkB system: a key determinant of mucosal inflammation and protection. Am J Physiol 2000;278:451-62.
  21. Campbell DJ, Kim CH, Butcher EC. Chemokines in the systemic organization of immunity. Immunol Rev 2003;195:58-71.
  22. Лазебник ЛБ, Дроздов В.Н. и др. Оксид азота как маркер воспаления при неспецифическом язвенном колите и болезни Крона // Экспериментальная клиническая гастроэнтерология. 2006. № 3. С. 4-8.
  23. Marcinkiewicz J, Chain B, Nowak B, et al. Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflam Res 2000;49:280-89.
  24. Guigot G, Guimbaud R, Bertrand V, et al. Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with Crohn's disease. Amino Acids 2000;18:229-35.
  25. Kolios G, Rooney N, Murthy CT, et al. Expression if inducible nitric oxide synthase activity in human colon epithelial cells: modulation by T-lymphocyte derived cytokines. Gut 1998;43:56-63.
  26. McCafferty DM. Peroxynitrite and inflammatory bowel disease. Gut 2000;46:436-39.
  27. Kharitonov SA, Yates DH, Barnes PJ. Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 1996;153:454-57.
  28. Grabowski PS, Macpherson H, Ralston SH. Nitric oxide production in cells derived from the human joint. Br J Rheumatol 1996;35:207-12.
  29. Abe T, Hikiji H, Shin WS, et al. Targeting of iNOS with antisense DNA plasmid reduces cytokine-induced ingibition of osteoblastic activity. Am J Physiol Endocrinol Metab 2003;285:E614-E621.
  30. Grisham MB, Pavlick KP, Laroux FS, et al. Nitric oxide and chronic gut inflammation: controverde in inflammatory bowel disease. J Invest Med 2002;50:272-83.
  31. Zandecki M, Raeymaekers P, Janssens J et al. The effect of nitric oxide donors on nitric oxide synthase-expressing mesenteric neurons in culture. Neurogastroenterol Motil 2006;18:307-15.
  32. Porras M, Martin MT, Teran E, et al. The nitric oxide donor LA-419 [S-(6-nitro-oxi-hexahydrofuro-furan-tioacetate] prevents intestinal dysmotility, bacterial translocation, and inflammation in a rat model of enteritis. JPET 2008;324:740-8.
  33. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev Immunol 2003;3:521-33.
  34. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006;55:205-11.
  35. Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 2006;55:1760-67.
  36. Klessen B, Kroesen AJ, Buhr HJ, et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 2002;37:1034-41.
  37. Lepage P, Seksik P, Sutren M, et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 2005;11:473-80.
  38. Vandenbroucke K, Hans W, Van Huysse, et al. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 2004;127:502-13.
  39. Clavel T, Haller D. Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Curr Issues Intestinal Microbiol 2007;8:25-43.
  40. Морозова Н.А., Белоусова Е.А., Великанов Е.В. и др. Применение азатиоприма при рефрактерном язвенном колите: зарубежные данные и собственный опыт // Фарматека. 2007. № 2. С. 27-30.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies