Novye napravleniya v targetnoy terapii nemelkokletochnogo raka legkogo


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Group of non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers, one of the most common oncological diseases. About ten years ago, cytotoxic therapy was the single therapeutic option for patients with NSCLC. Currently in oncology, there is era of targeted therapies and personalized approach to the choice of tactics of treatment of patients with malignant tumors, including NSCLC. The study of genetic disorders has led to the creation of targeted therapies for the treatment of this tumor type: some of them are high effective and has already been successfully used in clinical practice, while others are in various stages of clinical trials. This article considers the molecular genetic abnormalities in NSCLC, their clinical importance and potentials for the use of targeted therapy.

Full Text

Restricted Access

References

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2013 г. М., 2014. 235 с.
  2. Bell D.W., Brannigan B.W., Matsuo K., Finkelstein D.M., Sordella R., Settleman J., Mitsudomi T., Haber D.A. Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations: analysis of estrogen-related polymorphisms. Clin. Cancer Res. 2008;14:4079-84.
  3. Cappuzzo F., Ciuleanu T., Stelmakh L., Cicenas S., Szczesna A, Juhasz E., Esteban E., Molinier O., Brugger W., Melezinek I., Klingelschmitt G., Klughammer B., Giaccone G.; SATURN investigators. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2010;11 (6):521 -29.
  4. Lee D., Kim S.-W., Suh C., Han Y.H., Lee J.S. Phase II study of erlotinib for chemotherapy-naive patients with advanced or metastatic non-small cell lung cancer who are ineligible for platinum doublets. Cancer Chemother Pharmacol. 2011;67(1):35-9.
  5. Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169-81.
  6. Reungwetwattana T., Weroha S.J., Molina J.R. Oncogenic pathways, molecularly targeted therapies, and highlighted clinical trials in non-smallcell lung cancer (NSCLC). Clin. Lung. Cancer. 2012;13(4):252-66.
  7. Rosell R., Gervais R., Vergnenegre A., O'Byrne K., BoyerM.J., VonPawelJ.,PluzanskiA.,ShtivelbandM., Docampo L.I., Bennouna J., Zhang H., Liang J.Q., Doherty J.P., Taylor I., Mather C.B., Goldberg Z., O'Connell J., Paz-Ares L. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: Interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase III randomized trial. J. Clin. Oncol. 2011 ;29:7503.
  8. Mitsudomi T., Morita S., Yatabe Y., Negoro S., Okamoto I., Tsurutani J., Seto T., Satouchi M., Tada H., Hirashima T., Asami K., Katakami N., Takada M., Yoshioka H., Shibata K., Kudoh S., Shimizu E., Saito H., Toyooka S., Nakagawa K., Fukuoka M.; West Japan Oncology Group. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121-28.
  9. Mok T.S., Wu Y.-L., Thongprasert S., Yang C.H., Chu D.T., Saijo N., Sunpaweravong P., Han B., Margono B., Ichinose Y., Nishiwaki Y., Ohe Y., Yang J.J., Chewaskulyong B., Jiang H., Duffield E.L., Watkins C.L., Armour A.A., Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009;361(10):947-57.
  10. Zhou C., Wu Y.-L., Chen G., Feng J., Liu X.Q., Wang C., Zhang S., Wang J., Zhou S., Ren S., Lu S., Zhang L., Hu C., Hu C., Luo Y., Chen L., Ye M., Huang J., Zhi X., Zhang Y., Xiu Q., Ma J., Zhang L., You C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735-42.
  11. Balak M.N., Gong Y., Riely G.J., Somwar R., Li A.R., Zakowski M.F., Chiang A., Yang G., Ouerfelli O., Kris M.G., Ladanyi M., Miller V.A., Pao W. Novel D76 1Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 2006;12: 6494-501.
  12. Bean J., Riely G.J., Balak M., Marks J.L., Ladanyi M., Miller V.A., Pao W. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin. Cancer Res. 2008;14:7519-25.
  13. Ohashi K., Sequist L.V., Arcila M.E., Moran T., Chmielecki J., Lin Y.L., Pan Y., Wang L., de Stanchina E., Shien K., Aoe K., Toyooka S., Kiura K., Fernandez-Cuesta L., Fidias P., Yang J. C., Miller V.A., Riely G.J., Kris M.G., Engelman J.A., Vnencak-Jones C.L., Dias-Santagata D., Ladanyi M., Pao W. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc. Natl. Acad. Sci USA. 2012; 109: E212 7-E2133.
  14. Takezawa K., Pirazzoli V., Arcila M.E., Nebhan C.A., Song X., de Stanchina E., Ohashi K., Janjigian Y.Y., Spitzler P.J., Melnick M.A., Riely G.J., Kris M.G., Miller V.A., Ladanyi M., Politi K., Pao W. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2012;2:922-33.
  15. Greulich H., Chen T.H., Feng W., Janne P.A., Alvarez J.V., Zappaterra M., Bulmer S.E., Frank D.A., Hahn W.C., Sellers W.R., Meyerson M. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2(1 1):є313.
  16. Kobayashi S., Boggon T.J., Dayaram T., Jnne P.A., Kocher O., Meyerson M., Johnson B.E., Eck M.J., Tenen D.G., Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2005;352(8):786-92.
  17. Sequist L. V., Martins R. G., Spigel D., Grunberg S. M., Spira A., Janne P.A., Joshi V.A., McCollum D., Evans T.L., Muzikansky A., Kuhlmann G.L., Han M., Goldberg J.S.,Settleman J.,Iafrate A.J.,Engelman J.A., Haber D.A., Johnson B.E., Lynch T.J. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 2008;26:2442-49.
  18. www.clinicaltrials.gov
  19. Soda M., Choi Y.L., Enomoto M., Takada S., Yamashita Y., Ishikawa S., Fujiwara S., Watanabe H., Kurashina K., Hatanaka H., Bando M., Ohno S., Ishikawa Y., Aburatani H., Niki T., Sohara Y., Sugiyama Y., Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-66.
  20. Takeuchi K.,Choi Y.L., TogashiY.,Soda M., Hatano S., Inamura K., Takada S., Ueno T., Yamashita Y. ,Satoh Y., Okumura S., Nakagawa K., Ishikawa Y., Mano H. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res. 2009;15:3143-49.
  21. Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J., Lee K., Reeves C., Li Y., Hu Y., Tan Z., Stokes M., Sullivan L., Mitchell J., Wetzel R., Macneill J., Ren J.M., Yuan J., Bakalarski C.E., Villen J., Kornhauser J.M., Smith B., Li D., Zhou X., Gygi S.P., Gu T.L., Polakiewicz R.D., Rush J., Comb M.J. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190-203.
  22. Katayama R., Shaw A.T., Khan T.M., Mino-Kenudson M., Solomon B.J., Halmos B., Jessop N.A., Wain J.C., Yeo A.T., Benes C., Drew L., Saeh J.C., Crosby K., Sequist L. V., Iafrate A.J., Engelman J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl. Med. 2012;4:120ra 17.
  23. Bergethon K., Shaw A.T., Ou S.H., Katayama R., Lovly C.M., McDonald N.T., Massion P.P., Siwak-Tapp C., Gonzalez A., Fang R., Mark E.J., Batten J.M., Chen H., Wilner K.D., Kwak E.L., Clark J.W., Carbone D.P., Ji H., Engelman J.A., Mino-Kenudson M., Pao W., Iafrate A.J. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 2012;30:863-70.
  24. Davies K.D., Le A.T., Theodoro M.F., Skokan M.C., Aisner D.L., Berge E.M., Terracciano L.M., Cappuzzo F., Incarbone M., Roncalli M., Alloisio M., Santoro A., Camidge D.R., Varella-Garcia M., Doebele R.C. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin. Cancer Res. 2012; 18(17):457-79.
  25. Rimkunas V.M., Crosby K.E., Li D., Hu Y., Kelly M.E., Gu T.L., Mack J.S., Silver M.R., Zhou X., Haack H. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin. Cancer Res. 2012;18(16)·Λ449-57.
  26. Li M., Liu L., Liu Z., Yue S., Zhou L., Zhang Q., Cheng S., Li R.W., Smith P.N., Lu S. The status of KRAS mutations in patients with non-small cell lung cancers from mainland China. Oncol. Rep. 2009;22:1013-20.
  27. Riely G.J., Kris M.G., Rosenbaum D., Marks J., Li A., Chitale D.A., Nafa K., Riedel E.R., Hsu M., Pao W., Miller V.A., Ladanyi M. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin. Cancer Res. 2008;14:5731-34.
  28. Ihle N.T., Byers L.A., Kim E.S., Saintigny P., Lee J.J., Blumenschein G.R., Tsao A., Liu S., Larsen J.E., Wang J., Diao L., Coombes K.R., Chen L., Zhang S., Abdelmelek M.F., Tang X., Papadimitrakopoulou V., Minna J.D., Lippman S.M., Hong W.K., Herbst R.S., Wistuba I.I., Heymach J.V., Powis G. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl. Cancer Inst. 2012; 104:228-39.
  29. Roberts P.J., Stinchcombe T. E., Der C.J., Socinski M.A. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J. Clin. Oncol. 2010;28:4769-77.
  30. Linardou H., Dahabreh I.J., Kanaloupiti D., Siannis F., Bafaloukos D., Kosmidis P., Papadimitriou C.A., Murray S. Assessment of somatic KRAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and metaanalysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962-72.
  31. Paik P. K., Arcila M.E., Fara M., Sima C.S., Miller V.A., Kris M.G., Ladanyi M., Riely G.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 2011; 29:2046-51.
  32. Nguyen K.S., Neal J.W., Wakelee H. Review of the current targeted therapies for non-small-cell lung cancer. World J. Clin. Oncol. 20M;5(4):576-87.
  33. Arcila M.E., Chaft J.E., Nafa K., Roy-Chowdhuri S., Lau C., Zaidinski M., Paik P.K., Zakowski M.F., Kris M.G., Ladanyi M. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res. 2012; 18:4910-18.
  34. Li C., Sun Y., Fang R., Han X., Luo X., Wang R., Pan Y., Hu H., Zhang Y., Pao W., Shen L., Ji H., Chen H. Lung adenocarcinomas with HER2-activating mutations are associated with distinct clinical features and HER2/EGFR copy number gains. J. Thorac. Oncol. 2012;7:85-9.
  35. Tomizawa K., Suda K., Onozato R., Kosaka T., Endoh H., Sekido Y., Shigematsu H., Kuwano H., Yatabe Y., Mitsudomi T. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung. Cancer. 2011;74:139-44.
  36. Kawano O, Sasaki H., Endo K., Suzuki E., Haneda H., Yukiue H., Kobayashi Y., Yano M., Fujii Y. PIK3CA mutation status in Japanese lung cancer patients. Lung. Cancer. 2006;54:209-15.
  37. Carnero A., Blanco-Aparicio C., Renner O., Link W., Leal J.F. The PTEN/PI3K/Akt signaling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets. 2008;8:187-98.
  38. Bean J., Brennan C., Shih J.-Y., Riely G., Viale A., Wang L., Chitale D., Motoi N., Szoke J., Broderick S., Balak M., Chang W.C., Yu C.J., Gazdar A., Pass H., Rusch V., Gerald W., Huang S.F., Yang P.C., Miller V., Ladanyi M., Yang C.H., Pao W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci USA. 2007; 104(52):20932-3 7.
  39. Weiss J., Sos M.L., Seidel D., Peifer M., Zander T., Heuckmann J.M., Ullrich R.T., Menon R., Maier S., Soltermann A., Moch H., Wagener P., Fischer F., Heynck S., Koker M., Schö ttle J., Leenders F., Gabler F., Dabow I., Querings S., Heukamp L.C., Balke-Want H., Ansen S., Rauh D., Baessmann I., Altmüller J., Wainer Z., Conron M., Wright G., Russell P., Solomon B., Brambilla E., Brambilla C., Lorimier P., Sollberg S., Brustugun O.T., Engel-Riedel W., Ludwig C., Petersen I., Sanger J., Clement J., Groen H., Timens W., Sietsma H., Thunnissen E., Smit E., Heideman D., Cappuzzo F., Ligorio C., Damiani S., Hallek M., Beroukhim R., Pao W., Klebl B., Baumann M., Buettner R., Ernestus K., Stoelben E., Wolf J., Nürnberg P., Perner S., Thomas R.K. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl. Med. 2010; 2:62ra93.
  40. Dolan D.E., Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21 (3):231 -3 7.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies