Modern knowledge of inflammatory diseases of various localization and etiology: new possibilities of pharmacotherapy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Today, inflammatory processes of various etiology and localization are an acute problem for the clinician. Despite the wide arsenal of drugs used, inflammatory processes are still often accompanied by complications or transform into the chronic phase. The article considers the main problems caused by the lack of efficacy and restrictions in the use of non-steroidal anti-inflammatory drugs due to their side effects, discusses the role of the main components of the inflammatory process, as well as their relationship with complications and the appearance of chronic pain. The question of the lack of regulation of exclusively inflammatory mediators is raised. Separate groups of drugs with a proven inhibitory effect on pro-inflammatory factors of inflammation and the ability to activate the processes of resolving the inflammatory process are discussed, in particular, it is about bioregulatory drugs and their mechanisms of action.

Full Text

Restricted Access

About the authors

G. V Poryadin

Pirogov Medical University

Moscow, Russia

J. M Salmasi

Pirogov Medical University

Moscow, Russia

I. V Kukes

International Association of Clinical Pharmacologists and Pharmacists

Email: ilyakukes@gmail.com
Cand. Sci. (Med.), Clinical Pharmacologist 2, build. 1, Malaya Kalitnikovskaya str., Moscow 1109147, Russian Federation

A. N Kazimirsky

Pirogov Medical University

Moscow, Russia

An. B Danilov

Sechenov First Moscow State Medical University (Sechenov University); NCP to ensure effective cooperation of specialists in the field of medicine “Association of Interdisciplinary Medicine"

Moscow, Russia

N. B Lazareva

International Association of Clinical Pharmacologists and Pharmacists; Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia

A. B Danilov

Sechenov First Moscow State Medical University (Sechenov University); NCP to ensure effective cooperation of specialists in the field of medicine “Association of Interdisciplinary Medicine"

Moscow, Russia

References

  1. Porozov S, et al. Clin Dev Immunol 2004; 11(2): 143-49. Wolfarth B, etal. Curr Med Res Opin. 2013;29(suppl 2):1 -2.
  2. Коваленко П.С., Дыдыкина И.С., Журавлева M.B., Зоткин Е.Г. От эмпирических результатов клинической эффективности к доказательствам противовоспалительного действия Траумель® С in vitro и in vivo//Эффективная фармакотерапия. 2020. Т. 16. № 6. С. 14-18.
  3. Ebbinghaus M., Uhiig B., Richter F, et ai. The role of interleukin-1beta in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012;64:3897-907. doi: 10.1002/art.34675.
  4. Obreja O, Rathee P.K., Lips K.S., et ai. iL-1 beta potentiates heat-activated currents in rat sensory neurons: involvement of iL-1Ri, tyrosine kinase, and protein kinase C. FASEB J. 2002;16:1497-503. Doi: W.W96/fj.02-0101com.
  5. Takeda M., Tanimoto T., Kadoi J., et al. Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain. 2007;129:155-66. doi: 10.1016/j.pain.2006.10.007.
  6. Binshtok A.M., Wang H., Zimmermann K., et al. Nociceptors are interleukin-lbeta sensors. J Neurosci. 2008;28:14062-73. Doi: 10.1523/ JNEUROSCi.3795-08.2008.
  7. Li M., Shi J., Tang J.R., Chen D., et al. Effects of complete Freund's adjuvant on immunohistochemical distribution of iL-1beta and iL-1R i in neurons and glia cells of dorsal root ganglion. Acta Pharmacol Sin. 2005;26:192-98. doi: 10.1111/j.1745-7254.2005.00522.x.
  8. Sellam J., Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625-35. doi: 10.1038/nrrheum.2010.159.
  9. Kapoor M., Martel-Pelletier J., Lajeunesse D., et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33-42. Doi: 10.1038/ nrrheum.2010.196.
  10. Van Tiel S.T., Utomo L., De Swart J., et al. imaging inflammation in the knee joint with 111-inoctreoscan. Osteoarthr Cartil. 2016;24:S320.
  11. Roszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators inflamm. 2015;2015:816460. doi: 10.1155/2015/816460. PMID: 26089604; PMCiD: PMC4452191.
  12. de Lange-Brokaar B.J., ioan-Facsinay A., Yusuf E., et al. Evolution of synovitis in osteoarthritic knees and its association with clinical features. Osteoarthritis Cartilage. 2016;24(11):1867-74. doi: 10.1016/j.joca.2016.05.021. PMID: 27262546.
  13. Mabey T, Honsawek S. Cytokines as biochemical markers for knee osteoarthritis. World J Orthop. 2015;6(1):95-105. doi: 10.5312/wjo.v6.i1.95. PMID: 25621214; PMCiD: PMC4303794.
  14. Utomo L., Bastiaansen-Jenniskens YM., Verhaar J.A., van Osch G.J. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages. Osteoarthritis Cartilage. 2016;24(12):2162-70. doi: 10.1016/j.joca.2016.07.018. PMID: 27502245.
  15. Fahy N., de Vries-van Melle M.L., Lehmann J., et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis Cartilage. 2014;22(8):1167-75. doi: 10.1016/j.joca.2014.05.021. PMID: 24911520.
  16. Dankbar B., Neugebauer K., Wunrau C., et al. Hepatocyte growth factor induction of macrophage chemoattractant protein-1 and osteophyte-inducing factors in osteoarthritis. J Orthop Res. 2007;25(5):569-77. doi: 10.1002/jor.20338. PMID: 17262819.
  17. Ning L., Ishijima M., Kaneko H., et al. Correlations between both the expression levels of inflammatory mediators and growth factor in medial perimeniscal synovial tissue and the severity of medial knee osteoarthritis. Int Orthop. 2011;35(6):831-38. doi: 10.1007/s00264-010-1045-1. PMID: 20517696; PMCID: PMC3103960.
  18. Kjelgaard-Petersen C., Siebuhr A.S., Christiansen T., Ladel C, Karsdal M., Bay-Jensen A.C. Synovitis biomarkers: ex vivo characterization of three biomarkers for identification of inflammatory osteoarthritis. Biomarkers. 2015;20(8):547-56. Doi: 0.3109/1354750X.2015.1105497.
  19. Bondeson J., Wainwright S.D., Lauder S., et al. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 2006;8(6):R187. doi: 10.1186/ar2099. PMID: 17177994; PMCID: PMC1794533.
  20. Steinbeck M.J., Nesti L.J., Sharkey PF., Parvizi J. Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Orthop Res. 2007;25(9):1128-35. doi: 10.1002/jor.20400. PMID: 17474133; PMCID: PMC2954494.
  21. Grabowski P.S., Wright P.K., Van 't Hof R.J., et al. Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br J Rheumatol. 1997;36(6):651-55. Doi: 10.1093/ rheumatology/36.6.651. PMID: 9236674.
  22. Schelbergen R.F., de Munter W., van den Bosch M.H, et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann Rheum Dis. 2016;75(1):218-25. Doi: 10.1136/ annrheumdis-2014-205480. PMID: 25180294.
  23. van Lent PL., Blom A.B., Schelbergen R.F, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64(5):1466-76. doi: 10.1002/art.34315. PMID: 22143922.
  24. Sellam J., Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-35. Doi: 10.1038/ nrrheum.2010.159. PMID: 20924410.
  25. van den Bosch M.H., Blom A.B., Schelbergen R.F, et al. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis. Arthritis Rheumatol. 2016;68(1):152-63. doi: 10.1002/art.39420. PMID: 26360647.
  26. Blom A.B., van Lent P.L., Holthuysen A.E., et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage. 2004;12(8):627-35. doi: 10.1016/j.joca.2004.03.003. PMID: 15262242.
  27. Miller R.J., Jung H., Bhangoo S.K., White F.A. Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol. 2009:417-49. doi: 10.1007/978-3-540-79090-7_12.
  28. Schafers M., Lee D.H., Brors D., et et. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci. 2003;23:3028-38. Doi: 10.1523/ JNEUROSCI.23-07-03028.2003.
  29. Jin X., Gereau R.Wt. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci. 2006;26:246-55. doi: 10.1523/JNEUROSCI.3858-05.2006.
  30. Hensellek S., Brell P, Schaible H.G., et al. The cytokine TNFalpha increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK act.ivat.ion. Mol Cell Neurosci. 2007;36:381-91. Doi: 10.1016/j. mcn.2007.07.010.
  31. Jung H., Miller R.J. Activation of the nuclear factor of activated T-cells (NFAT) mediates upregulation of CCR2 chemokine receptors in dorsal root ganglion (DRG) neurons: a possible mechanism for activity-dependent transcription in DRG neurons in association with neuropathic pain. Mol Cell Neurosci. 2008;37:170-77. Doi: 10.1016/j. mcn.2007.09.004.
  32. Shen K.F, Zhu H.Q., Wei X.H., et al. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol. 2013;247:466-75.
  33. Fan Z., Bau B., Yang H., et al. Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1? Arthritis Rheum. 2005;52(1):136-43. doi: 10.1002/art.20725.
  34. Cortial D., Gouttenoire J., Rousseau C.F., et al. Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthritis Cartilage. 2006;14(7):631-40. doi: 10.1016/j.joca.2006.01.008.
  35. Stemkowski P.L., Smith P.A. Longterm IL-1beta exposure causes subpopulation-dependent alterations in rat dorsal root ganglion neuron excitability. J Neurophysiol. 2012;107:1586-97. doi: 10.1152/jn.00587.2011
  36. Safieh-Garabedian B., Poole S., Allchorne A., et al. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 1995;115:1265-75. Doi: 10.1111/ j.1476-5381.1995.tb15035.x.
  37. Seidel M.F, Wise B.L., Lane N.E. Nerve growth factor: an update on the science and therapy. Osteoarthritis and cartilage. Osteoarthritis Cartilage. 2013;21:1223-28. Doi: 10.1016/j. joca.2013.06.004.
  38. von Banchet G.S., Kiehl M., Schaible H.G. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat. J Neurochem. 2005;94:238-48. doi: 10.1111/j.1471-4159.2005.03185.x.
  39. Obreja O., Biasio W., Andratsch M., et al. Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain. 2005;128:1634-41. doi: 10.1093/brain/awh490.
  40. Orita S., Koshi T., Mitsuka T., et al. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord. 2011;12:144. doi: 10.1186/1471-2474-12-144.
  41. Cuellar J.M., Scuderi G.J., Cuellar V.G., et al. Diagnostic utility of cytokine biomarkers in the evaluation of acute knee pain. J Bone Joint Surg Am. 2009;91:2313-20. doi: 10.2106/JBJS.H.00835.
  42. Breivik H., Collett B., Ventafridda V., et al. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287-333. doi: 10.1016/j.ejpain.2005.06.009. PMID: 16095934.
  43. Zhou S.F., Zhou Z.W., Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278(2):165-88. doi: 10.1016/j.tox.2009.08.013. PMID: 19715737.
  44. Wyatt J.E., Pettit W.L., Harirforoosh S. Pharmacogenetics of nonsteroidal antiinflammatory drugs. Pharmacogenomics J. 2012;12(6):462-67. doi: 10.1038/tpj.2012.40. PMID: 23044603.
  45. Wang Y, Yi X.D., Lu H.L. Influence of CYP2C9 and COX-2 Genetic Polymorphisms on Clinical Efficacy of Non-Steroidal Anti-Inflammatory Drugs in Treatment of Ankylosing Spondylitis. Med Sci Monit. 2017;23:1775-82. Doi: 10.12659/ msm.900271.
  46. German Homoeopathic Pharmacopoeia. GHP 2016 including 13th Supplement 2016. Vol. 1, 2.
  47. Lussignoli S., Bertani S., Metelmann H., et al. Effect of Traumeel® S, a homeopathic formulation, on blood-induced inflammation in rats. Complement Ther Med. 1999;7(4):225-30. Doi: 10.1016/ s0965-2299(99)80006-5.
  48. Porozov S., Cahalon L., Weiser M., et al. inhibition of iL-1fi and TNF-а secretion from resting and activated human immunocytes by the homeopathic medication Traumeel® S. Clin Dev immunol 2004;11(2):143-49. doi: 10.1080/10446670410001722203.
  49. Schmolz M. Transforming Growth Factor beta (TGF-в): eine neue Regelstrecke fur antiphlogistische Therapien? Biol Med. 2000;29(1):31-4.
  50. Schmolz M., Heine H. Homoopathische Substanzen aus der antihomotoxischen Medizin modulieren die Synthese von TGF-в 1 in menschlichen Vollblutkulturen. Biol Med. 2001;30(2):61-5.
  51. Moldoveanu B., Otmishi P, Jani P, et al. inflammatory mechanisms in the lung J inflamm Res. 2009;2:1-11.
  52. Quinton L.J., Jones M.R., Robson B.E., et al. Alveolar epithelial STAT3, iL-6 family cytokines, and host defense during Escherichia coli pneumonia. Am J Respir Cell Mol Biol. 2008; 38:699-706. doi: 10.1165/rcmb.2007-0365OC.
  53. Ye P, Garvey P.B., Zhang P, et al. interleukin-17 and lung host defense against Klebsiella pneumoniae infection Am J Respir Cell Mol Biol. 2001;25:335-40. doi: 10.1165/ajrcmb.25.3.4424.
  54. Ward P.A. Role of C5 activation products in sepsis. Scientific World J. 2010;10:2395-402. doi: 10.1100/tsw.2010.216.
  55. Hu L., Yang C., Zhao T, et al. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res. 2012;176:260-66. Doi: 10.1016/j. jss.2011.06.035.
  56. Li T.T., Zhang Y.S., He L., et al. Protective effect of phloroglucinol against myocardial ischaemia-reperfusion injury is related to inhibition of myeloperoxidase activity and inflammatory cell infiltration. Clin Exp Pharmacol Physiol. 2011;38:27-33. doi: 10.1111/j.1440-1681.2010.05457.x.
  57. Ikeda-Matsuo Y, Tanji H., Narumiya S., Sasaki Y inhibition of prostaglandin E(2) EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. J Neuroimmunol. 2011;238:34-43. Doi: 10.1016/j. jneuroim.2011.06.014.
  58. Wu H., Ma J., Wang P, et al. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol. 2010;21:1878-90. Doi: 10.1681/ ASN.2009101048.
  59. Garcia-Romo G.S., Caielli S., Vega B., et al. Netting neutrophils are major inducers of type i iFN production in pediatric systemic lupus erythematosus Sci Transl Med. 2011;3:73ra20. doi: 10.1126/scitranslmed.3001201.
  60. Hojyo S., Uchida M., Tanaka K., et al. How COViD-19 induces cytokine storm with high mortality. inflamm Regen. 2020;40:37. Doi: 10.1186/ s41232-020-00146-3.
  61. Skovbjerg S., Roos K., Olofsson S., et al. High Cytokine Levels in Tonsillitis Secretions Regardless of Presence of Beta-Hemolytic Streptococci. J interferon Cytokine Res. 2015;35(9):682-89. doi: 10.1089/jir.2014.0123. PMID: 26060912.
  62. Min Y.G., Lee K.S. The role of cytokines in rhinosinusitis. J Korean Med Sci. 2000;15(3):255-59. doi: 10.3346/jkms.2000.15.3.255. PMID: 10895964; PMCiD: PMC3054641.
  63. Chung K.F. Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl. 2001;34:50s-9s. PMID: 12392035.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies